Heat Conduction through Cartesian, Cylindrical and Spherical

Co-ordinates

- General Heat conduction equation:
(i) Cartesian Co-ondinates:

Consider the flow of heat though an infinitesimal volume elemat oriented on $3 D$ ca-ordmate system.

The sides $d x, d y, d z$ hare been taken parallel to the $x, y, z a x$.
The energy balance for the little element as per 1^{34} lew of In Net heat conducted into $\}+$ Internal heat generate $n\}$ (2) element $d x d y d z$ perunittime $]^{+}$per unit time

(3)

The quantity of heat flowing through $A A^{\prime} D D^{\prime}$ face sung time interval de is

$$
\begin{aligned}
& \text { Heat influx } Q_{x}=-k_{x} \cdot(d y \cdot d z) \cdot \frac{d t}{d x} \cdot d T \\
& \text { Heat aitflux } Q_{x+d x}=Q_{x}+\frac{\partial}{d x}\left(Q_{x}\right) \cdot d x .
\end{aligned}
$$

Heat accumalated in x-direction

$$
\begin{align*}
d Q_{x} & =Q_{x}-Q_{x}+d x \\
& =Q_{x}-\left(Q_{x}+\frac{\partial}{\partial x} \cdot Q_{x} \cdot d x\right) \\
& =\frac{\partial}{\partial x}\left[k_{x} \cdot(\Delta y \cdot d z) \cdot \frac{\partial t}{\partial x} \cdot d \tau\right] d x \\
& =\frac{D}{\partial x} \cdot\left[k_{x} \cdot \frac{\partial t}{\partial x}\right] d x \cdot d y \cdot d z \cdot d \tau \tag{2}\\
d Q_{y} & =\frac{\partial}{\partial x y} \cdot\left[k_{y} \cdot \frac{\partial z}{\partial y}\right] d x \cdot d y \cdot d z \cdot d \tau \tag{3}\\
\therefore I d d x & =\frac{\partial}{\partial z}\left[k_{z} \cdot \frac{\partial t}{\partial z}\right] \cdot d x \cdot d y \cdot d z \cdot d \tau
\end{align*}
$$

Total heat stored in the elemental volume due to heat flow along all axes is

$$
\left[\begin{array}{l}
(1)+(3)+4 \\
\left.\frac{\partial}{\Delta x}\left[k_{x}, \frac{\partial t}{\partial x}\right]+\frac{\partial}{\partial y} \cdot\left[k_{y} \cdot \frac{\partial z}{\partial y}\right]+\frac{\partial}{\partial z}\left[k_{z} \cdot \frac{\partial t}{\Delta z}\right]\right] d x \cdot d y \cdot d z \cdot d z_{2} \tag{5}
\end{array}\right.
$$

If $q y$ is heat generated per unit volume and per una time then total heat generated in central volume $=q_{g} \cdot d x \cdot d y \cdot d z \cdot d e_{2}$
Heat flow along co-ordmate axes and heat generated in cantralvolume increases theimal/internal energy of the lattice st Increase in thermal energy $=\left(S \cdot(d x, d y d z) \cdot\left(C, \frac{d z}{d r} \cdot d t\right.\right.$
From energy balance considerations: (s) $+(6)=(7)$

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial x}\left(k_{x} \frac{\partial t}{\partial x}\right)\right.}\left.+\frac{\partial}{\partial y}\left(k_{y} \frac{\partial z}{\partial y}\right)+\frac{\partial}{\partial z}\left(k_{z}-\frac{\partial z}{\partial z}\right)\right] d x \cdot d y \cdot d z \cdot d \tau+q_{y} \cdot d x \cdot d y \cdot d z \cdot d x \\
&=S \cdot d x \cdot \partial y \cdot d z \cdot C \cdot \frac{\partial t}{\partial \tau} \cdot d \tau \\
& \frac{\partial}{\partial x} \cdot\left[k_{x} \cdot \frac{\partial z}{\partial x}\right]+\frac{\partial}{\partial y} \cdot\left[k_{y} \cdot \frac{\partial t}{\partial y}\right]+\frac{\partial}{\partial z} \cdot\left[k_{z} \cdot \frac{\partial t}{\partial z}\right]+q_{y}=S \cdot C \cdot \frac{\partial}{\partial \tau}
\end{aligned}
$$

\rightarrow Genera heat conduction equation, establishes in differential form
the orektianship between time \& space variation of temperate at any point of the soled through which conduction takes plea c For homageneaus \& isotropic material:
\longrightarrow These properties are net directional characteristics
Hence $k_{x}=k_{y}=k_{z}=k$ then

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\Delta z^{2}}+\frac{q_{g}}{k}=\frac{S c}{k} \cdot \frac{\partial z}{\Delta \tau}=\frac{1}{\alpha} \cdot \frac{\partial t}{\partial \tau}
$$

$\rightarrow \alpha=\mathrm{k} / \mathrm{se}$ is called Thermal diffusing
\leftrightarrow Tells how fast heat is propagated during changer of temp. with α higher \Rightarrow Time required for heat to penetrate is shorten

$$
\nabla^{2} t+\frac{q_{s}}{k}=\frac{1}{\alpha} \cdot \frac{\Delta t}{\Delta \tau} \Rightarrow \text { tapboien equation }
$$

- Special forms of hest conduction equation:
(i) Steady state:

There is no dependency of temp. on time.
Heat flow equation $\frac{\partial^{2} t}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}+\frac{\partial^{2} t}{\partial z^{2}}+\frac{q_{g}}{k}=0$

$$
\nabla^{2} t+\frac{q_{g}}{k}=0 \quad \text { (Poisson's equation) }
$$

(in In absence of internal heat generation

$$
\begin{aligned}
\frac{\partial^{2} t}{\partial x^{2}}+\frac{\partial^{2} t}{\partial y^{2}}+\frac{\partial^{2} t}{\partial z^{2}} & =0 \\
\nabla^{2} t & =0 \quad(\text { laplace equation })
\end{aligned}
$$

(ii) Unsteady state with no internal heat generation

$$
\begin{aligned}
\frac{\partial^{2} t}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}+\frac{\partial^{2} t}{\partial z^{2}} & =\frac{1}{\alpha} \cdot \frac{\partial t}{\partial \tau} \\
\nabla^{2} t & =\frac{1}{\alpha} \cdot \frac{\partial t}{\partial \tau} \text { (Fourier equation) }
\end{aligned}
$$

iii) For one-D \& steady state heat flow with no internal heat generation, then :

$$
\frac{d^{2} t}{d x^{2}}=0
$$

\Rightarrow Cylindrical Co-ardinates: For cylindrical bodies like cylinders,

Consider a small volume element having sides do, dz\& mat as shown in above fy.

Assuming material to be isotropic.
(i) radial direction $(x-\phi)$ plane:-
the at influx $P_{n}=-k \cdot(r d \phi \cdot d z) \cdot \frac{\Delta t}{\Delta x} \cdot d \tau$
Heat efflux $Q_{r+d r}=Q_{n}+\frac{\partial}{\partial Q_{r}}\left(Q_{n}\right) d r_{1}$
treat stored in the element due to flow of heat in radial direction

$$
\begin{aligned}
\partial Q_{x} & =Q_{x}-Q_{x}+d x \\
& =-\frac{\partial}{\partial x}\left(Q_{2}\right) d x \\
& =-\frac{d}{d x}\left(-K \cdot\left(x_{x} d \cdot d z\right) \cdot \frac{\partial t}{\partial x} \cdot d r\right) \cdot d x
\end{aligned}
$$

$$
\begin{aligned}
& =k \cdot(d x \cdot d \phi \cdot d z) \frac{\partial}{\sqrt{x}}\left(x \cdot \frac{\partial t}{d x}\right) d \tau \\
& =k \cdot d x \cdot \Delta \phi \cdot d z \cdot\left[2 \cdot \frac{\partial^{2} t}{\partial x^{2}}+\frac{\partial t}{\partial x}\right] d \tau \\
& =k \cdot(d x \cdot x d \phi \cdot d z)\left[\frac{\partial^{2} t}{d x^{2}}+\frac{1}{\partial} \cdot \frac{\partial t}{\sqrt{x}}\right] d \tau
\end{aligned}
$$

(i.) Tangential direction (x^{-z} plane)

Heat influx $Q_{\phi}=-k \cdot\left(n_{1} \cdot d z\right)$. $\frac{A_{0}}{\text { hod }} \cdot d \tau$
Wheat efflux $\left.Q_{\phi}+d_{\phi}=Q_{\phi}+\frac{D_{1}}{x \cdot \phi_{\phi}} Q_{\phi}\right)$. nd
Heat stared in tangential direction

$$
\begin{aligned}
& \Delta Q_{\phi}=Q_{\phi}-Q_{\phi+\infty \phi} \\
& =\frac{-\partial}{\operatorname{sid} d}\left(Q_{\phi}\right) \cdot \operatorname{sid} \phi \\
& =\frac{-\partial}{\operatorname{si\phi }}\left[-k \cdot d x \cdot d z \cdot \frac{\partial t}{x \partial \phi} \cdot \Delta \tau\right] \cdot x d \phi \\
& =k \cdot d x \cdot d \phi \cdot d z \cdot \frac{\partial}{d \phi}\left[\frac{1}{x} \cdot \frac{d t}{\partial \phi}\right] \cdot d \tau \\
& =k \cdot(d x \cdot \text { nd } \phi \cdot d z) \cdot \frac{1}{\partial^{2}} \cdot \frac{\partial^{2} t}{d \phi^{2}} d \tau
\end{aligned}
$$

(iii) Axial direction ($x-\phi$ plane):

Heat isplun $Q_{z}=-k \cdot(x d x \cdot d x) \cdot \frac{\partial t}{d z} \cdot d \tau$

$$
\because \text { efflux } Q_{z+d z}=Q_{z}+\frac{\partial}{\partial z}\left(Q_{z}\right) d z
$$

treat stored in the element due to host flow axial dmeatia

$$
\begin{aligned}
d Q_{z} & =Q_{z}-Q_{z+d z} \\
& =-\frac{\partial}{\partial z}\left[-k \cdot\left(x_{1} d \phi \cdot(x)-\frac{\partial t}{d z} \cdot d z\right] d z\right. \\
& =k \cdot\left(d m_{1} \cdot \operatorname{nd\phi } \cdot d z\right) \frac{\partial^{2} t}{\partial z^{2}} \cdot d z
\end{aligned}
$$

Heat generated with in control volume $=q_{g} \cdot d v \cdot d \tau$
Rate of change of energy with in control volume $=S \cdot d v . e \cdot \frac{d r}{d r} \cdot d t$ from energy equation

$$
\begin{gathered}
k \cdot d v \cdot\left[\frac{\partial^{2} t}{\partial x^{2}}+\frac{1}{\partial} \cdot \frac{\partial t}{\partial x}+\frac{1}{x^{2}} \cdot \frac{\partial^{2} t}{\partial \phi^{2}}+\frac{\partial^{2} t}{\partial z^{2}}\right] d \tau+q^{2} \cdot d v \cdot d \tau \\
=S \cdot d v \cdot c \cdot \frac{\partial t}{\partial \tau} \cdot d \tau
\end{gathered}
$$

Divide by $d v . d \tau$ on both sides

$$
\begin{aligned}
& {\left[\frac{\partial^{2} t}{\partial x^{2}}+\frac{1}{x} \cdot \frac{\partial t}{\partial x}+\frac{1}{x^{2}} \cdot \frac{\partial^{2} t}{\partial x^{2}}+\frac{\partial^{2} t}{\partial z^{2}}\right]+q g=s \cdot c \cdot \frac{\partial t}{\partial r} } \\
{\left[\left[\frac{\partial^{2} t}{\partial x^{2}}+\frac{1}{x} \cdot \frac{\partial t}{\partial x}+\frac{1}{x^{2}} \cdot \frac{\partial^{2} t}{\partial x^{2}}+\frac{\partial^{2} t}{\partial z^{2}}\right]\right.} & +\frac{q y}{k}=\frac{s c}{k} \cdot \frac{\partial t}{\partial r} \\
& =\frac{1}{\alpha} \cdot \frac{\partial t}{\partial r}
\end{aligned}
$$

The heat conduction m cymotuical co-ardinctes could also be obtained by doing folbiong co-erdmate transformation

$$
x=a \cos \phi ; y=x \sin \phi ; z=z
$$

using chain hill $\frac{\partial t}{\partial x}=\frac{\partial t}{d x} \cdot \frac{\partial x}{\partial x}+\frac{\partial t}{\partial y} \cdot \frac{\partial y}{\partial x}$

$$
\begin{align*}
& =\frac{\partial t}{\partial x} \cdot \cos \phi+\frac{\partial t}{\partial y} \cdot \sin \phi \\
\cos \phi \cdot \frac{\partial t}{\partial x} & =\cos ^{2} \phi \cdot \frac{\partial t}{\partial x}+\sin \phi \cdot \cos \phi \cdot \frac{\partial t}{\partial y} \tag{1}\\
\Delta l^{\prime} 0 \quad \frac{\partial t}{\partial \phi} & =\frac{\partial t}{\partial x} \cdot \frac{\partial x}{\partial \phi}+\frac{\partial t}{\partial y} \cdot \frac{\partial t}{\partial \phi} \\
& =\frac{\partial t}{\partial x} \cdot(-x \sin \phi)+\frac{\partial t}{\partial y} \cdot(2 \cos \phi) \\
\frac{\sin \phi}{x} \cdot \frac{\partial t}{\partial \phi} & =-\sin ^{2} \phi \cdot \frac{\partial t}{\partial x}+\sin \phi \cdot \cos \phi \cdot \frac{\partial t}{\partial y}
\end{align*}
$$

From (1) \& (2)

$$
\begin{align*}
\frac{\sin \phi}{\partial} \cdot \frac{\partial t}{\partial \phi} & =-\sin ^{2} \phi \frac{\partial t}{\partial x}+\left[\cos \phi \cdot \frac{\partial t}{\partial x}-\cos ^{2} \phi \cdot \frac{\partial t}{\partial x}\right] \\
& =-\frac{\partial t}{\partial x}+\cos \phi \cdot \frac{\partial t}{\partial x} \\
\frac{\partial t}{\partial x} & =\cos \phi \cdot \frac{\partial t}{\partial x}-\frac{\sin \phi}{\partial x} \cdot \frac{\partial t}{\partial \phi}-3
\end{align*}
$$

upan diff. with hespect to x.

$$
\begin{gathered}
\frac{\partial}{\partial x} \cdot\left(\frac{\partial t}{\partial x}\right)=\frac{\partial}{\partial x}\left[\cos \phi \cdot \frac{\partial t}{\partial x}-\frac{\sin \phi}{x} \cdot \frac{\partial t}{\partial \phi}\right] \\
\frac{\partial^{2} t}{\partial x^{2}}=\cos \phi \cdot \frac{\partial}{\partial x_{1}}\left[\frac{\partial t}{\partial x}\right]-\frac{\sin \phi}{\partial \phi} \cdot \frac{\partial}{\partial \phi} \cdot\left[\frac{\partial t}{\partial x}\right] \cdot \\
=\cos \phi \cdot \frac{\partial}{\partial x}\left[\cos \phi \cdot \frac{\partial t}{\partial x}-\frac{\sin \phi}{x} \cdot \frac{\partial t}{\partial \phi}\right]-\frac{\sin \phi}{\partial} \cdot \frac{\partial}{\partial \phi}\left[\cos \phi \frac{\partial t}{\partial x_{1}}\right. \\
{\left[\frac{\sin \phi}{x} \cdot \frac{\partial t}{\partial \phi}\right]} \\
{\left[\frac{\partial}{\partial x} \cdot \frac{1}{\partial}=\frac{-1}{\partial t}\right]} \\
{\left[\frac{\partial}{\partial \phi} \cdot \cos \phi=\sin \phi\right]-\cos ^{2} \phi \cdot \frac{\partial^{2} t}{\partial x^{2}}+\frac{\cos \phi \cdot \sin \phi}{x^{2}} \cdot \frac{\partial t}{\partial \phi}+\frac{\sin ^{2} \phi}{x^{2}} \frac{\partial t}{\partial \phi}+} \\
\frac{\sin ^{2} \phi}{\partial^{2}} \cdot \frac{\partial^{2} t}{\partial \phi^{2}}+\frac{\sin \phi \cdot \cos \phi}{x^{2}} \cdot \frac{\partial t}{\partial \phi}
\end{gathered}
$$

II才 $\frac{\partial^{2} t}{\partial y^{2}}=\sin ^{2} \phi \cdot \frac{\partial^{2} t}{\partial x^{2}}+\frac{\cos ^{2} \phi}{\theta} \cdot \frac{\partial t}{\partial x}-\frac{\cos \phi \cdot \sin \phi}{\theta^{2}} \cdot \frac{\partial t}{\partial \phi}+$

$$
\frac{\cos ^{2} \phi}{x^{2}} \cdot \frac{\partial^{2} t}{\partial \phi^{2}}-\frac{\cos \phi \cdot \sin \phi}{x^{2}} \cdot \frac{\partial t}{\partial \phi}
$$

from (4) (5

$$
\begin{equation*}
\frac{\partial^{2} t}{\partial x^{2}}+\frac{\partial^{2} t}{\partial y^{2}}=\frac{\partial^{2} t}{\partial x^{2}}+\frac{1}{क x} \cdot \frac{\partial t}{\partial x}+\frac{1}{\partial x^{2}} \cdot \frac{\partial^{2} t}{\partial \phi^{2}} \tag{6}
\end{equation*}
$$

Substituting (6) in $\frac{\partial^{2} t}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}+\frac{\partial^{2} t}{\partial z^{2}}+\frac{q g}{k}=\frac{-1}{\alpha}-\frac{\partial z}{\partial \tau}$

$$
\left[\frac{\partial^{2} t}{\partial x^{2}}+\frac{1}{\partial} \cdot \frac{\partial z}{\partial x}+\frac{1}{x^{2}} \cdot \frac{\partial^{2} t}{\partial \phi^{2}}+\frac{\partial^{2} z}{\partial z^{2}}\right]+\frac{q_{g}}{k}=\frac{1}{\alpha} \cdot \frac{d z}{d p}
$$

- For steady state uni-drection heat flow in the radial Erection, and with no internal heat generation

$$
\frac{d^{2} t}{d x^{2}}+\frac{1}{x} \cdot \frac{d t}{d x}=0
$$

\rightarrow Spherical Co-ordinates:-
Consider an elemental volume having Co-ardmates $(r, \phi, \theta):$

volume of the clement $=d n \cdot x d \theta \cdot \sin \theta d \phi$
$q_{g}=$ heat generated per unit volume per unit time.
)Net heat accumulated in the element:-
Heat flow tharagh $x-\theta$ plane: ϕ-drection:
eat influx) $\hat{R}_{\phi}=-k \cdot(\Delta r \cdot r d \theta) \cdot \frac{\partial t}{\sin \theta \cdot d \phi} \cdot d t$
Heat efflux, Gx申+d申 $=Q_{\phi}+\frac{d}{\sin \theta d \phi}\left(ब_{\phi}\right) \cdot \sin \cdot d \phi$
Heat accumulated in op-drection,

$$
\begin{aligned}
d Q_{\phi} & =Q_{\phi}-\sigma_{\phi+\alpha \phi} \\
& =\frac{1}{\lambda \sin \theta} \cdot \frac{\partial}{\partial \phi} \cdot\left(Q_{\phi} \phi\right) \cdot \sin \theta \cdot d \phi
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sin \theta} \cdot \frac{\partial}{\partial \phi}\left[-k \cdot(\Delta \sin \cdot d \theta) \frac{1}{\sin \theta} \cdot \frac{\partial t}{\partial \phi} \cdot d \tau\right] \cdot x \sin \theta \cdot d \phi \\
& =k \cdot[d \theta \cdot \operatorname{sid} \cdot \sin \theta \cdot \Delta \phi] \frac{1}{h^{2} \cdot \sin ^{2} \theta} \cdot \frac{b^{2} t}{\partial \phi^{2}} \cdot d \tau
\end{aligned}
$$

Heat Flow in $x-\phi$ plane, Q-direction:
Heat inftun. $Q_{\theta}=-k \cdot(\Delta \sin \sin \theta d \theta) \cdot \frac{\Delta t}{\sin \theta} \theta \tau$
Heat effing, $Q_{\theta+d \theta}=\rho_{\theta}^{\prime}+\frac{\Delta}{\operatorname{sid}}\left(Q_{\theta}\right) \rho \theta \theta$

Heat accumalated in θ-drecticn:

$$
\begin{aligned}
& \Delta Q_{\theta}^{*}=Q_{\theta}-Q_{\theta+\infty} \\
& =\frac{\partial}{\operatorname{sa\theta }}(Q \theta) x d \theta \\
& =\frac{\partial}{\pi d \theta}\left[-k \cdot(d \sin \sin \theta \cdot d \phi) \frac{d r}{\pi d \theta} \cdot d r\right] \theta \cdot d \theta \\
& =\frac{k}{\gamma} \cdot \frac{d s \cdot r \Delta \phi \cdot \operatorname{sd\theta }}{x} \cdot \frac{\partial}{\partial \theta} \cdot\left[\sin \theta \cdot \frac{\partial t}{d \theta}\right] d r \\
& =k \cdot d x \cdot r \Delta \theta-\sin \theta \cdot d \phi \cdot \frac{1}{x^{2} \sin \theta} \cdot \frac{\partial}{\partial \theta}\left[\sin \theta-\frac{\partial t}{\partial \theta}\right] d t
\end{aligned}
$$

Heat Slaw in $\theta-\phi$ plane, क-direction:
Heat influx $Q_{n}^{2}=-k \cdot(\lambda \rightarrow \theta \cdot h \sin \theta d \phi) \cdot \frac{\partial t}{d \lambda_{n}} \cdot \partial \tau$
\therefore efflux $\hat{Q}_{x+d x}=Q_{2}+\frac{d}{d x}\left(Q_{x}\right)$ do
Heat accumalated in redirection,

$$
\begin{aligned}
\Delta Q_{n} & =Q_{x}-Q\left(x_{1}+d s\right) \\
& =\frac{-d}{\partial x}\left[Q_{x}\right] d s \\
& =\frac{\partial}{\partial x}\left[-K \cdot\left(s_{x} d \theta \cdot \sin \theta \cdot d \phi\right) \frac{\partial t}{\partial x} \cdot d \tau\right] d x \\
& =k \cdot d \theta \cdot \sin \theta \cdot d \phi \cdot \Delta x \cdot \frac{\partial}{\partial x}\left[s^{2} \cdot \frac{\partial t}{\partial x}\right] \cdot \Delta \tau
\end{aligned}
$$

Net heat accumulated in the element

$$
\begin{aligned}
& =k \cdot d r \cdot r d \theta \cdot r \sin \theta \cdot d \phi\left[\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} t}{\partial t^{2}}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \cdot \frac{\partial t}{d \theta}\right)\right. \\
& \left.+\frac{1}{r^{2}} \cdot \frac{\partial}{\partial x}\left[x^{2} \cdot \frac{\partial t}{\partial x}\right]\right] d \tau
\end{aligned}
$$

(ii) Heat generated with in the element

$$
=q g \cdot(d x \cdot r d \theta \cdot \sin \theta \cdot d \phi) d \tau
$$

(iii) Energy stored in the element

The increase in tHermal energy $=S \cdot d r \cdot r d \theta \cdot r \sin \theta d \phi \cdot C \cdot \frac{\partial t}{\partial \tau} \cdot d r$ from energy balance equation (i), (2), (3);

$$
\begin{aligned}
& (1)+(2)=(3) ; D \sin \text { by } k \cdot[d x \cdot r d \theta \cdot r \sin \theta \cdot d \phi] d \tau, \\
& {\left[\frac{1}{r^{2} \sin ^{2} \theta} \cdot \frac{d^{2} t}{d \phi^{2}}+\frac{1}{r^{2} \sin \theta} \cdot \frac{d}{\partial \theta}\left[\sin \theta \cdot \frac{\partial t}{d \theta}\right]+\frac{1}{r^{2}} \cdot \frac{\partial}{\partial x}\left[x^{2} \frac{\partial t}{d x}\right]\right]} \\
& \quad+\frac{q_{g}}{k}=\frac{g c}{k} \cdot \frac{\partial t}{d \tau}=\frac{1}{\alpha} \cdot \frac{\partial t}{d \tau}
\end{aligned}
$$

- For steady, ane -D, no heat suirces

$$
\frac{1}{x^{2}} \cdot \frac{d}{d x}\left[x^{2} \cdot \frac{d t}{d x}\right]=0
$$

The above equation can also be derived by using

$$
x=r \sin \theta \cdot \sin \phi, \quad y=r \sin \theta \cdot \cos \phi, z=r \cos \theta .
$$

