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Transient Conduction 

Transient Conduction 
•  A heat transfer process for which the temperature varies with time, as well 

   as location within a solid. 

•  It is initiated whenever a system experiences a change in operating conditions 

   and proceeds until a new steady state (thermal equilibrium) is achieved. 

•  It can be induced by changes in: 

–  surface convection conditions (        ),  h,T

•  Solution Techniques 

–  The Lumped Capacitance Method 

–  Exact Solutions 

–  The Finite-Difference Method 

–  surface radiation conditions (          ), 
r surh ,T

–  a surface temperature or heat flux, and/or 

–  internal energy generation. 



Lumped Capacitance Method 

The Lumped Capacitance Method 

•  Based on the assumption of a spatially uniform temperature distribution 

   throughout the transient process. 

•  Why is the assumption never fully realized in practice? 

•  General Lumped Capacitance  

    Analysis: 

  Consider a general case,  

     which includes convection, 

     radiation and/or an applied 

     heat flux at specified  

     surfaces 

     as well as internal energy  

     generation 
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Lumped Capacitance Method (cont.) 

 First Law: 

st
in out g

dE dT
c E E E

dt dt
    

•  Assuming energy outflow due to convection and radiation and with 

   inflow due to an applied heat flux  ,sq
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•  Is this expression applicable in situations for which convection and/or 

   radiation provide for energy inflow? 

•  May h and hr be assumed to be constant throughout the transient process? 

•  How must such an equation be solved? 



Special Case (Negligible Radiation 

•  Special Cases (Exact Solutions,                )   0 iT T
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The non-homogeneous differential equation is transformed into a  

 homogeneous equation of the form: 

d
a

dt





 

Integrating from t=0 to any t and rearranging, 
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To what does the foregoing equation reduce as steady state is approached? 

How else may the steady-state solution be obtained? 



Special Case (Convection) 

  Negligible Radiation and Source Terms , 0, 0 :gr sh h E q
    
 
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The thermal time constant is defined as 
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Thermal 

Resistance, Rt 

Lumped Thermal 

Capacitance, Ct 

The change in thermal energy storage due to the transient process is 
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Special Case (Radiation) 

  Negligible Convection and Source Terms , 0, 0 :gr sh h E q
    
 

Assuming radiation exchange with large surroundings, 
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Result necessitates implicit evaluation of T(t). 
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Biot Number 

The Biot Number and Validity of 

The Lumped Capacitance Method 

•  The Biot Number:  The first of many dimensionless parameters to be 

    considered. 

  Definition: 
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  Physical Interpretation: 
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  Criterion for Applicability of Lumped Capacitance Method: 

1Bi 

h   convection or radiation coefficient 



Problem: Thermal Energy Storage 

Problem 5.11:   Charging a thermal energy storage system consisting 

 of a packed bed of aluminum spheres. 

KNOWN:  Diameter, density, specific heat and thermal conductivity of aluminum spheres used 

in packed bed thermal energy storage system.  Convection coefficient and inlet gas 

temperature. 

FIND:  Time required for sphere at inlet to acquire 90% of maximum possible thermal energy 

and the corresponding center temperature. 

Aluminum sphere
  D = 75 mm, 
    

T = 25 Ci 
oGas

  T Cg,i 
o= 300

h = 75 W/m -K2

= 2700 kg/m   3

k = 240 W/m-K
c = 950 J/kg-K

Schematic: 



Problem:  Thermal Energy Storage (cont.) 

ASSUMPTIONS:  (1) Negligible heat transfer to or from a sphere by radiation or conduction 

due to contact with other spheres, (2) Constant properties. 

ANALYSIS:  To determine whether a lumped capacitance analysis can be used, first compute 

Bi = h(ro/3)/k = 75 W/m
2
K (0.025m)/150 W/mK = 0.013 <<1.   

Hence, the lumped capacitance approximation may be made, and a uniform temperature may 

be assumed to exist in the sphere at any time.   

From Eq. 5.8a, achievement of 90% of the maximum possible thermal energy storage 

corresponds to 
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From Eq. (5.6), the corresponding temperature at any location in the sphere is 
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If the product of the density and specific heat of copper is (c)Cu  8900 kg/m
3
  400 J/kgK = 

3.56  10
6
 J/m

3
K, is there any advantage to using copper spheres of equivalent diameter in lieu 

of aluminum spheres? 

Does the time required for a sphere to reach a prescribed state of thermal energy storage 

change with increasing distance from the bed inlet?  If so, how and why? 
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Problem:  Furnace Start-up 

Problem 5.15:   Heating of coated furnace wall during start-up. 

KNOWN:  Thickness and properties of furnace wall.  Thermal resistance of ceramic coating 

on surface of wall exposed to furnace gases.  Initial wall temperature. 

FIND:  (a) Time required for surface of wall to reach a prescribed temperature, (b) 

Corresponding value of coating surface temperature. 

Schematic: 



Problem: Furnace Start-up 

ASSUMPTIONS:  (1) Constant properties, (2) Negligible coating thermal capacitance, (3) 

Negligible radiation. 

PROPERTIES:  Carbon steel:  = 7850 kg/m
3
, c = 430 J/kgK, k = 60 W/mK. 

ANALYSIS:  Heat transfer to the wall is determined by the total resistance to heat transfer 

from the gas to the surface of the steel, and not simply by the convection resistance.  
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and the lumped capacitance method can be used. 

 
(a) From Eqs. (5.6) and (5.7), 
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Hence, with 



Problem:  Furnace Start-up (cont.) 

(b) Performing an energy balance at the outer surface (s,o), 
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How does the coating affect the thermal time constant? 


