


 HEAT TRANSFER 

Many heat transfer problems require the understanding of 

the complete time history of the temperature variation.  For 

example, in metallurgy, the heat treating process can be 

controlled to directly affect the characteristics of the 

processed materials.  Annealing (slow cool) can soften 

metals and improve ductility.  On the other hand, 

quenching (rapid cool) can harden the strain boundary and 

increase strength.  In order to characterize this transient 

behavior, the full unsteady equation is needed: 
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“A heated/cooled body at Ti is suddenly exposed to fluid at T with a 

known heat transfer coefficient . Either evaluate the temperature at a 

given time, or find time for a given temperature.” 

 

Q: “How good an approximation would it be to say the annular cylinder is 

more or less isothermal?” 

A: “Depends on the relative importance of the thermal conductivity in the 

thermal circuit compared to the convective heat transfer coefficient”. 

Fig. 5.1 



Biot No. Bi 
•Defined to describe the relative resistance in a thermal circuit of 

the convection compared 

Lc is a characteristic length of the body 

Bi→0: No conduction resistance at all. The body is isothermal.  

Small Bi: Conduction resistance is less important. The body may still    

      be approximated as isothermal 

      Lumped capacitance analysis can be performed. 
Large Bi:  Conduction resistance is significant. The body cannot be treated as 

      isothermal. 
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Transient heat transfer with no internal 
resistance:  Lumped Parameter Analysis 

Solid 

Valid for Bi<0.1 

Total Resistance= Rexternal + Rinternal  
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Lumped Parameter Analysis 
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Note: Temperature function only of time and not of space! 

- To determine the temperature at a given time, or 

- To determine the time required for the 

   temperature to reach a specified value. 
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Thermal diffusivity:               (m² s-1) 

 

Lumped Parameter Analysis 



Lumped Parameter Analysis 
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T = exp(-Bi*Fo) 

Define Fo as the Fourier number (dimensionless time) 

and Biot number 

The temperature variation can be expressed as 
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Spatial Effects and the Role of Analytical  Solutions  

The Plane Wall: Solution to the Heat Equation for a Plane Wall with 

Symmetrical Convection Conditions 
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The Plane Wall: 

Note: Once spatial variability of temperature is included, 
there is existence of seven different independent 
variables.  

 
How may the functional dependence be simplified? 
 

•The answer is Non-dimensionalisation. We first need 
to understand the physics behind the phenomenon, 
identify parameters governing the process, and group 
them into meaningful non-dimensional numbers. 
 

 



Dimensionless temperature difference:  
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The solution for temperature will now be a function of the other non-dimensional 
quantities   
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The roots (eigenvalues) of the equation can be obtained from tables given in standard textbooks. 



The One-Term Approximation         2.0Fo

Variation of mid-plane temperature with 
time  
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 as a function of Bi.  
 
Variation of temperature with location  )( *x  and time ( Fo ):   
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Numerical Methods for Unsteady 
Heat Transfer 

 Unsteady heat transfer equation, no generation, constant k, one-

dimensional in Cartesian coordinate: 

 The term on the left hand side of above eq. is the storage term, 

arising out of accumulation/depletion of heat in the domain under 

consideration. Note that the eq. is a partial differential equation as a 

result of an extra independent variable, time (t). The corresponding 

grid system is shown in fig. on next slide. 

S
x

T
k

xt

T
c 

























PP 
WW EE 

xx 
ww ee 

(d(dx)x)ww (d(dx)x)ee 

tt 

∆∆xx 

Integration over the control volume and over a time interval 

gives 
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If the temperature at a node is assumed to prevail over the whole 

control volume, applying the central differencing scheme, one obtains: 
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Now, an assumption is made about the variation of TP, TE and Tw with 

time. By generalizing the approach by means of a weighting 

parameter f  between 0 and 1: 
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Repeating the same operation for points E and W, 



Upon re-arranging, dropping the superscript “new”, and casting the 

equation into the standard form 
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The time integration scheme would depend on the choice of the 

parameter f. When f = 0, the resulting scheme is “explicit”; when 

0 < f ≤ 1, the resulting scheme is “implicit”; when f = 1, the 

resulting scheme is “fully implicit”, when f = 1/2, the resulting 

scheme is “Crank-Nicolson”. 



t 

T 

TP 
old 

t 
TP 

new 
t+Dt 

f=0 

f=1 

f=0.5 

Variation of T within the time interval ∆t for different schemes 

Explicit scheme 

Linearizing the source term as  and setting  f = 0  
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For stability, all coefficients must be positive in the discretized 

equation. Hence, 
0)(0  PEWP Saaa
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The above limitation on time step suggests that the explicit 

scheme becomes very expensive to improve spatial accuracy. 

Hence, this method is generally not recommended for general 

transient problems.  

Crank-Nicolson scheme 

Setting  f = 0.5, the Crank-Nicolson discretisation becomes: 
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For stability, all coefficient must be positive in the discretized 

equation, requiring 
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The Crank-Nicolson scheme only slightly less restrictive than the 

explicit method. It is based on central differencing and hence it is 

second-order accurate in time. 

The fully implicit scheme 

Setting  f = 1, the fully implicit discretisation becomes: 
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General remarks: 

A system of algebraic equations must be solved at each time 

level. The accuracy of the scheme is first-order in time. The time 

marching procedure starts with a given initial field of the scalar 

0. The system is solved after selecting time step Δt. For the 

implicit scheme, all coefficients are positive, which makes it 

unconditionally stable for any size of time step. Hence, the 

implicit method is recommended for general purpose transient 

calculations because of its robustness and unconditional stability. 


