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CONVECTIVE HEAT TRANSFER FROM/ TO 
FLUID FLOWING IN A STRAIGHT CIRCULAR 

DUCT (Re < 2000)
Quantity of interest:
Duct length required to raise mean fluid temperature 

from T0 to Tb < Tw

U  average axial fluid velocity
r0(pdw

2/4)U  total mass flow rate
vz(r) parabolic (constant property flow Newtonian fluid 

far downstream of inlet)
T(r) then satisfies linear, 2nd-order PDE:

(axial conduction neglected compared with radial)
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Boundary conditions:

T(r,z) found by Fourier method of “Separation-of-
variables”

Local heat flux

CONVECTIVE HEAT TRANSFER FROM/ TO 
FLUID FLOWING IN A STRAIGHT CIRCULAR 

DUCT (Re < 2000)
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Tb(z)mixing-cup average temperature at axial station z

Fluid temperature that would result from severing
the duct at z and adiabatically mixing the effluent
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DUCT (Re < 2000)
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CONVECTIVE HEAT TRANSFER FROM/ TO 
FLUID FLOWING IN A STRAIGHT CIRCULAR 

DUCT (Re < 2000)
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Nuh is a function of the dimensionless axial variable 
(Graetz, 1885)

and

CONVECTIVE HEAT TRANSFER FROM/ TO 
FLUID FLOWING IN A STRAIGHT CIRCULAR 

DUCT (Re < 2000)
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Nuh ∞ at thermal inlet

Nuh constant value far downstream (fully-developed or
asymptotic Nusselt number)

Axial average heat-transfer coefficient

where

CONVECTIVE HEAT TRANSFER FROM/ TO 
FLUID FLOWING IN A STRAIGHT CIRCULAR 

DUCT (Re < 2000)
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Overall energy balance on fluid contained in Eulerian CV 
between 0 and z yields:

 Enables calculation of length required to achieve 
any Tb
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Alternatively:

where

and

CONVECTIVE HEAT TRANSFER FROM/ TO 
FLUID FLOWING IN A STRAIGHT CIRCULAR 

DUCT (Re < 2000)
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Resulting in:

(log-mean temperature difference, LMTD)

Other important internal-flow heat-transfer problems
exhibit same general features:
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CONVECTIVE HEAT TRANSFER FROM/ TO 
FLUID FLOWING IN A STRAIGHT CIRCULAR 

DUCT (Re < 2000)
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HEAT EXCHANGE BETWEEN A FLUID AND A 
POROUS MEDIUM (“PACKING”) 

Packed duct is equivalent of many tortuous interstitial
ducts defined by spaces between bed particles

Appropriate dimensionless energy-transport coefficient
Nuh,bed

Depends on Rebed, Pr

 “superficial” fluid mass velocity
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dz  element of column height

Total volume  A0dz

Packing surface area  a”’ A0dz

Energy transferred from packing to fluid 

Average heat flux  /(a”’ A0dz) 

Dimensionless heat transfer coefficient
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HEAT EXCHANGE BETWEEN A FLUID AND A 
POROUS MEDIUM (“PACKING”) 
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Analogous expressions apply for species mass exchange
between fluid & fixed/ fluidized bed, tube bundle

e.g., fixed-bed catalytic reactor

Preliminary design based on “plug flow” in cylindrical
vessel of constant cross-section

Refinements needed to take care of non-idealities

 Radially non-uniform G0, non-uniform packing
temperature, variable fluid properties, etc.

HEAT EXCHANGE BETWEEN A FLUID AND A 
POROUS MEDIUM (“PACKING”) 
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DIFFUSION FROM A STEADY POINT SOURCE IN 
A UNIFORM MOVING STREAM

Quantity of interest:

Thermal wake of point heat source of strength 

 In constant-property, uniform, laminar stream

Relevant to combustion gases, distributed heat sources, 
pollutant transport (mass-transfer analog)

Energy is convected downstream (+z direction), diffuses 
radially & axially

q
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DIFFUSION FROM A STEADY POINT SOURCE IN 
A UNIFORM MOVING STREAM

Local energy-balance equation:

Spherical radius

(measured from point source)
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DIFFUSION FROM A STEADY POINT SOURCE IN 
A UNIFORM MOVING STREAM

Energy convection and diffusion from a continuous point source in a uniform stream
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DIFFUSION FROM A STEADY POINT SOURCE IN 
A UNIFORM MOVING STREAM

Boundary conditions:

Leading to:
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Relation implies non-physical behavior: T  ∞ in
immediate vicinity of point source

Meaningful at downstream distances >> source size

At any z >> r, radial temperature profiles are Gaussian
in shape:

Along the axis r = 0,

Can be used to determine k-values based on axial
temperature decay data

No htc’s since there are no boundary surfaces
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STEADY TURBULENT FLOWS

Turbulence: localized non-steadiness associated with
enhancement of time-averaged rates of momentum,
energy & mass transport

For Re and Rah numbers above “transition” values

Extrapolation of laminar heat-transfer coefficient laws
into turbulent region will result in serious
underestimation of transport rates
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Turbulence: localized non-steadiness associated with
enhancement of time-averaged rates of momentum,
energy & mass transport

e.g., higher drag (undesirable), higher heat-exchange
rates (desirable)– the two may be in conflict!

For Re and Rah numbers above “transition” values

Extrapolation of laminar heat-transfer coefficient laws
into turbulent region will result in serious
underestimation of transport rates

STEADY TURBULENT FLOWS
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STEADY TURBULENT FLOWS

Vertical flat surfaces in quiescent Newtonian fluid
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FORCED-CONVECTIVE TURBULENT HEAT 
TRANSFER FROM/ TO STRAIGHT, SMOOTH 

DUCTS
Fully-developed Nusselt numbers not constant, but 

depend on Re, Pr

or

(for Re > 104, Pr ≥ 0.7)
Apply to non-circular ducts as well (with deff = 4A/P)

    0 .8 1 30.023 R e P rh hN u N u   

    0.2 2 30.023Re Prh hSt St     



25

Thermal entrance effect is modified to:

Above Re, Pr-dependencies are oversimplifications

Stanton number and pipe friction factor are closely
related (extended Reynolds’ analogy)
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TURBULENT THERMAL BOUNDARY LAYERS ON 
A SMOOTH FLAT PLATE

For ReL > 105, viscous flow within a flat-plate forced-
convection BL becomes turbulent at some x (transition)

Heat transfer across laminar BL for x < x(transition)

Heat transfer across turbulent BL for x(transition) ≤ x ≤ L

 If turbulence is triggered near leading-edge, turbulence
dominant over entire plate, and for 105 ≤ ReL ≤ 107, skin
friction distribution becomes:
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Stanton-number distribution:

or

Averaging over entire plate on one side:

    1 5 2 30.0288 Re Prh xSt x  

   4 5 1 30.0288 Re Prh xNu x 

 4 5 1 30.036 Re Prh LNu 

TURBULENT THERMAL BOUNDARY LAYERS ON 
A SMOOTH FLAT PLATE
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Thermal turbulent BL slope thickness 

Laminar:

Time-averaged heat fluxes in turbulent BL fall off with 
distance as x-1/5

On non-isothermal curved surfaces, x  distance along 
surface

e.g., turbine blades, nozzle surfaces

TURBULENT THERMAL BOUNDARY LAYERS ON 
A SMOOTH FLAT PLATE
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Natural convection:

For Newtonian fluids with Prandtl numbers nearly
equal to that of air, and Rah > 109:

Local heat fluxes nearly constant along plate surface,
hence:

 (reference length L)
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TURBULENT THERMAL BOUNDARY LAYERS ON 
A SMOOTH FLAT PLATE
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ISOLATED SPHERE AT HIGH Re

For Re >> 3 X 105, turbulence within thermal BL amplifies
total heat-transfer coefficient, Nuh, for an isothermal
sphere

Up to Re = 105 :

For Re >> 3 X 105, reliable data & correlations not
available

Separated flow introduces great complexity in theory
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Turbulence types:

Confined to BL adjacent to solid surfaces

Mainstream turbulence

Empirical correction factors needed for:

= mainstream turbulence “intensity” (ratio of root-
mean-square (rms) velocity fluctuation to time-
averaged approach velocity),

t ,I 

ISOLATED SPHERE AT HIGH Re
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and

ratio of mainstream turbulence (macro-) scale
to body dimension

Mainstream turbulence has two effects:

Triggers earlier transition to turbulence within BL

Modifies time-averaged transport across laminar BL

t ,L / L 

ISOLATED SPHERE AT HIGH Re


