> Quantity of interest:

- > Duct length required to raise mean fluid temperature from T_0 to $T_b < T_w$
- > U \rightarrow average axial fluid velocity
- > $\rho_0(\pi d_w^2/4)U \rightarrow$ total mass flow rate
- v_z(r) parabolic (constant property flow Newtonian fluid far downstream of inlet)
- > T(r) then satisfies linear, 2nd-order PDE:

$$2U.\left[1-\left(\frac{2r}{d_{w}}\right)^{2}\right]\frac{\partial T}{\partial z}=\frac{\alpha}{r}\cdot\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right)$$

(axial conduction neglected compared with radial)

Boundary conditions:

 $T(r,0) \equiv T_0 = \text{constant}$ $T(d_w / 2, z) \equiv T_w = \text{constant}$ $\left(\frac{\partial T}{\partial x}\right)_{r=0} = 0,$

T(r,z) found by Fourier method of "Separation-ofvariables"

Local heat flux

$$\dot{q}_{ref} \equiv k \left[\frac{T_w - T_b(z)}{d_w} \right]$$

➤ T_b(z) → mixing-cup average temperature at axial station z Fluid temperature that would result from severing the duct at z and adiabatically mixing the effluent

4

Nu_h is a function of the dimensionless axial variable (Graetz, 1885)

$$\xi_h \equiv \frac{1}{Re Pr} \cdot \frac{z}{d_w}$$

and

$$Nu_{h} \approx const \ \xi_{h}^{-1/3} \qquad for \ \xi_{h} \to 0$$
$$Nu_{h} \to 3.657 \qquad for \ \xi_{h} \to \infty$$

 $> Nu_h \rightarrow \infty$ at thermal inlet

> Nu_h → constant value far downstream (fully-developed or asymptotic Nusselt number)

$$\overline{Nu}_{h}\left(\xi_{h}\right) \equiv \frac{1}{\xi_{h}} \int_{0}^{\xi_{h}} Nu_{h}\left(\xi_{h}'\right) d\xi_{h}$$

6

Axial average heat-transfer coefficient $\overline{Nu}_{h}(\xi_{h}) = \overline{Nu}_{h}(\infty) \cdot \begin{bmatrix} f(thermal \ entrance) \end{bmatrix}$ where $F(thermal \ entrance) \approx \begin{bmatrix} 1 + (7.60\xi_{h})^{-8/3} \end{bmatrix}^{1/8}$

Overall energy balance on fluid contained in Eulerian CV between 0 and z yields:

$$\frac{T_{w} - T_{b}(z)}{T_{w} - T_{b}(0)} = \exp\left\{-4\xi_{h}\overline{Nu}_{h}(\infty).F(\text{thermal entrance})\right\}$$

Enables calculation of length required to achieve any T_b

Alternatively: $\frac{\dot{q} / A_{w}}{\left\{\frac{k\left(\Delta T\right)_{mean}}{d_{w}}\right\}} = \overline{Nu_{h}}\left(\xi_{max}\right)$

where

$$\dot{q} = \dot{m}c_{p}\left[T_{b}\left(L\right) - T_{b}\left(0\right)\right]$$

and

$$A_{w} = \pi d_{w}L$$

Resulting in:

$$\Delta T_{mean} \equiv \frac{\left(T_{w} - T_{b}\left(0\right)\right) - \left(T_{w} - T_{b}\left(L\right)\right)}{ln\left[\frac{T_{w} - T_{b}\left(0\right)}{T_{w} - T_{b}\left(L\right)}\right]} \equiv LMTD$$

(log-mean temperature difference, LMTD)

Other important internal-flow heat-transfer problems exhibit same general features:

Geometry	b/a	Nu⊤	$Nu_{\rm H1}$	$Nu_{\rm H2}$	$C_{\rm f}R_{\rm e}$	$\frac{\dot{J}_{H1}}{C_{f}}^{+}$	Nu _{H1} Nu ₇
$\frac{1}{2b}$ $(-2a)$	1 1/2 1/8	3.657 3.74 3.72	4.364 4.88 5.09	4.364	16.000 18.24 19.15	0.307 0.301 0.299	1.19 1.30 1.37
<u>↓</u> 2b ↑ →2a →	1 1/2 1/4 1/8	2.976 3.391 4.439 5.597	3.608 4.123 5.331 6.490	3.091 3.017 2.930 2.904	14.227 15.548 18.233 20.585	0.286 0.299 0.329 0.355	1.21 1.22 1.20 1.16
^{2b} ★ ====	0	7.541	8.235	8.235	24.000	0.386	1.09

t This heading is the same as $Nu_{H1}Pr^{1/3}/C_fRe$ with Pr = 0.7; Nu_sC_f , Re based on $d_{eff} \equiv 4A/$ perimeter a The subscripts T, H1 and H2 on the relevant Nusselt numbers mean, respectively:

T1: pertaining to constant wall temperature

H1: pertaining to actual constant heat flux

H2: pertaining to peripheral and axial constancy of heat flux

Geometry	b/a	Nu⊤	Nu_{H1}	Nu_{H2}	$C_{\rm f}R_{\rm e}$	<u>j́н1</u> ⁺ C _f	Nu _{H1} Nu _T
insulated	0	4.861	5.385	5.385	24.000	0.253	1.11
\bigcirc		3.34*	4.002	3.862	15.054	0.299	1.20
2b + -+ 2a +-	√3 /2	2.39*	3.014	1.474	12.630	0.269	1.26
	√ <u>3</u> /2	2.47	3.111	1.892	13.333	0.263	1.26

[†] This heading is the same as $Nu_{H1}Pr^{-1/3}/C_f Re$ with Pr = 0.7; $Nu_{,}C_f$, Re based on $d_{eff} \equiv 4A$ / perimeter a The subscripts T, H1 and H2 on the relevant Nusselt numbers mean, respectively:

T1: pertaining to constant wall temperature

H1: pertaining to actual constant heat flux

H2: pertaining to peripheral and axial constancy of heat flux

- Packed duct is equivalent of many tortuous interstitial ducts defined by spaces between bed particles
- ➤ Appropriate dimensionless energy-transport coefficient → Nu_{h,bed}
 - Depends on Re_{bed}, Pr

$$\operatorname{Re}_{bed} \equiv \frac{G_o d_{p,eff}}{\mu \left(1 - \varepsilon\right)}$$

 $G_0 (\equiv \dot{m} / A_0) \rightarrow$ "superficial" fluid mass velocity

> dz \rightarrow element of column height

> Total volume $\rightarrow A_0 dz$

> Packing surface area \rightarrow a" A₀dz

> Energy transferred from packing to fluid $\rightarrow d\dot{q}$

> Average heat flux $\rightarrow d\dot{q}$ /(a" A₀dz)

Dimensionless heat transfer coefficient

$$Nu_{h,bed} = const. \frac{d\dot{q}/(a'''A_o dz)}{\left[k\left(T_w - T_b\right)\right]/d_{i,eff}}$$

14

- Analogous expressions apply for species mass exchange between fluid & fixed/ fluidized bed, tube bundle
 - > e.g., fixed-bed catalytic reactor
 - Preliminary design based on "plug flow" in cylindrical vessel of constant cross-section
 - Refinements needed to take care of non-idealities
 - Radially non-uniform G₀, non-uniform packing temperature, variable fluid properties, etc.

- Quantity of interest:
 - > Thermal wake of point heat source of strength \dot{q}
 - In constant-property, uniform, laminar stream
- Relevant to combustion gases, distributed heat sources, pollutant transport (mass-transfer analog)
- Energy is convected downstream (+z direction), diffuses radially & axially

Local energy-balance equation:

$$U\frac{\partial T}{\partial z} = \alpha \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{\partial^2 T}{\partial z^2} \right] \quad (if \ \alpha = const).$$

Spherical radius

$$s \equiv \left(r^2 + z^2\right)^{1/2}$$

(measured from point source)

Energy convection and diffusion from a continuous point source in a uniform stream

Boundary conditions:

 $\lim_{s \to \infty} T = T_{\infty} \qquad \text{(specified constant)}$ $\lim_{s \to 0} \left[-\left(4\pi s^2\right) k\left(\frac{\partial T}{\partial s}\right) \right] = \dot{q} \qquad \text{(specified source strength)}$ $\lim_{r \to 0} \left(\frac{\partial T}{\partial r}\right) = 0 \qquad \qquad \text{for } z > 0$

Leading to:

$$T(r,z) - T_{\infty} = \frac{\dot{q}}{4\pi ks} \cdot \exp\left[\frac{-U(s-z)}{2\alpha}\right]$$

- > Relation implies non-physical behavior: $T \rightarrow \infty$ in immediate vicinity of point source
 - Meaningful at downstream distances >> source size
 - > At any z >> r, radial temperature profiles are Gaussian in shape: $\frac{T(r, z) - T_{\infty}}{T(0, z) - T_{\infty}} \approx \exp\left[-\frac{Uz}{4\alpha}\left(\frac{r}{z}\right)^{2}\right]$
- > Along the axis r = 0, T (0, z) $T_{\infty} = \frac{\dot{q}}{4\pi kz}$
 - Can be used to determine k-values based on axial temperature decay data
 - No htc's since there are no boundary surfaces

STEADY TURBULENT FLOWS

- Turbulence: localized non-steadiness associated with enhancement of time-averaged rates of momentum, energy & mass transport
 - For Re and Ra_h numbers above "transition" values
 - Extrapolation of laminar heat-transfer coefficient laws into turbulent region will result in serious underestimation of transport rates

STEADY TURBULENT FLOWS

- Turbulence: localized non-steadiness associated with enhancement of time-averaged rates of momentum, energy & mass transport
 - > e.g., higher drag (undesirable), higher heat-exchange rates (desirable) – the two may be in conflict!
 - For Re and Ra_h numbers above "transition" values
 - Extrapolation of laminar heat-transfer coefficient laws into turbulent region will result in serious underestimation of transport rates

STEADY TURBULENT FLOWS

Vertical flat surfaces in quiescent Newtonian fluid

FORCED-CONVECTIVE TURBULENT HEAT TRANSFER FROM/ TO STRAIGHT, SMOOTH DUCTS

Fully-developed Nusselt numbers not constant, but depend on Re, Pr

$$Nu_h(\infty) = \overline{Nu_h}(\infty) \cong 0.023 \,\mathrm{Re}^{0.8} \,\mathrm{Pr}^{1/3}$$

or

$$St_h(\infty) = \overline{St_h}(\infty) \cong 0.023 \,\mathrm{Re}^{-0.2} \,\mathrm{Pr}^{-2/3}$$

(for Re > 10^4 , Pr ≥ 0.7)

> Apply to non-circular ducts as well (with $d_{eff} = 4A/P$)

FORCED-CONVECTIVE TURBULENT HEAT TRANSFER FROM/ TO STRAIGHT, SMOOTH DUCTS

Thermal entrance effect is modified to:

$$F(thermal\ entrance) \approx 1 + \left(\frac{z}{d_w}\right)^{-2/3} \qquad (\text{Re} > 10^4, \text{Pr} > 0.6)$$

> Above Re, Pr-dependencies are oversimplifications

Stanton number and pipe friction factor are closely related (extended Reynolds' analogy)

For Re_L > 10⁵, viscous flow within a flat-plate forced-convection BL becomes turbulent at some x (transition)
Heat transfer across laminar BL for x < x(transition)
Heat transfer across turbulent BL for x(transition) ≤ x ≤ L
If turbulence is triggered near leading-edge, turbulence dominant over entire plate, and for 10⁵ ≤ Re_L ≤ 10⁷, skin friction distribution becomes:

$$\frac{\tau_w(x)}{\rho_w U^2} \equiv \frac{1}{2} c_f(x) = 0.0288 (\text{Re}_x)^{-1/5}$$

> Stanton-number distribution:

$$St_h(x) \cong 0.0288 (\text{Re}_x)^{-1/5} \text{Pr}^{-2/3}$$

or

$$\overline{Nu_h}(x) \cong 0.0288 (\operatorname{Re}_x)^{4/5} \operatorname{Pr}^{1/3}$$

Averaging over entire plate on one side:

$$\overline{Nu_h} \cong 0.036 (\operatorname{Re}_L)^{4/5} \operatorname{Pr}^{1/3}$$

> Thermal turbulent BL slope thickness $\delta_h \cong x^{1/5}$

> Laminar: $\delta_h \cong x^{1/2}$

Time-averaged heat fluxes in turbulent BL fall off with distance as x^{-1/5}

➢ On non-isothermal curved surfaces, x → distance along surface

> e.g., turbine blades, nozzle surfaces

> Natural convection:

> For Newtonian fluids with Prandtl numbers nearly equal to that of air, and $Ra_h > 10^9$:

$$Nu_h(x) \cong 0.10 (Ra_h)^{1/3}$$
 (Pr ≈ 0.7)

- Local heat fluxes nearly constant along plate surface, hence:
 - $\overline{Nu}_h \cong 0.10 \left(Ra_h \right)^{1/3} \qquad \left(for \quad \Pr \approx 0.7, \quad \operatorname{Ra}_{h,L} > 10^9 \right)$

> (reference length \rightarrow L)

ISOLATED SPHERE AT HIGH Re

For Re >> 3 X 10⁵, turbulence within thermal BL amplifies total heat-transfer coefficient, Nu_h, for an isothermal sphere

> Up to Re = 10^5 : $\overline{Nu_h} = 2 + \left[0.4 (\text{Re})^{1/2} + 0.06 (\text{Re})^{2/3} \right] (\text{Pr})^{0.4}$ > For Re >> 3 X 10⁵, reliable data & correlations not available

Separated flow introduces great complexity in theory

ISOLATED SPHERE AT HIGH Re

Turbulence types:

Confined to BL adjacent to solid surfaces

Mainstream turbulence

Empirical correction factors needed for:

 $I_{t,\infty}$ = mainstream turbulence "intensity" (ratio of rootmean-square (rms) velocity fluctuation to timeaveraged approach velocity),

ISOLATED SPHERE AT HIGH Re

and

- $L_{t,\infty} \ / \ L \equiv \text{ratio of mainstream turbulence (macro-) scale} \\ \text{to body dimension}$
- > Mainstream turbulence has two effects:
 - Triggers earlier transition to turbulence within BL
 - Modifies time-averaged transport across laminar BL