RADIATION HEAT TRANSFER FUNDAMENTALS

BASIC RADIATION PHYSICS

- RADIATION IS A FORM OF ELECTROMAGNETIC ENERGY TRANSFER
- MAY BE WAVE TRANSFER
- MAY BE PHOTONS OR QUANTA
- SURFACE OR VOLUMETRIC
 PHENOMENON
- CAN BE GENERATED FROM A
 SOLID OR LIQUID SURFACE
- CAN BE GENERATED IN A GAS

BASIC RADIATION PHYSICS

 PRIMARY RELATIONSHIPS ARE WAVELENGTH AND FREQUENCY

$$\lambda = \frac{C_0}{U}$$

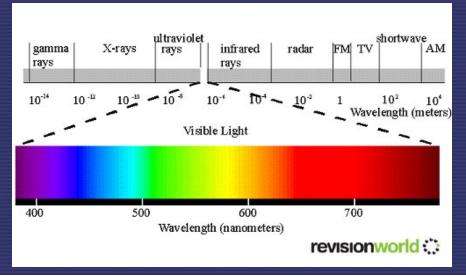
 WHERE Co IS THE SPEED OF LIGHT IN A VACUUM

$$C_0 = 2.998 * 10^8 \frac{m}{\text{sec}}$$

 ENERGY OF A PHOTON IS BASED ON PLANCK'S CONSTANT.

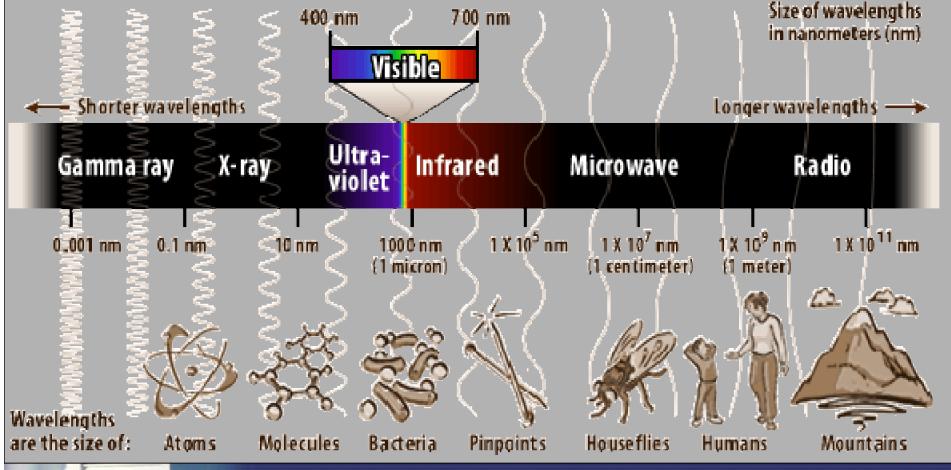
$$e = hv = h\frac{C_0}{\lambda}$$

THERMAL RADIATION


OVERALL ELECTROMAGNETIC SPECTRUM

	Wavelength (m)	Frequency (Hz)	Energy (J)
Radio	> 1 x 10 ⁻¹	< 3 x 10 ⁹	< 2 x 10 ⁻²⁴
Microwave	1 x 10 ⁻³ - 1 x 10 ⁻¹	3 x 10 ⁹ - 3 x 10 ¹¹	2 x 10 ⁻²⁴ - 2 x 10 ⁻²²
Infrared	7 x 10 ⁻⁷ - 1 x 10 ⁻³	3 x 10 ¹¹ - 4 x 10 ¹⁴	2 x 10 ⁻²² - 3 x 10 ⁻¹⁹
Optical	4 x 10 ⁻⁷ - 7 x 10 ⁻⁷	4 x 10 ¹⁴ - 7.5 x 10 ¹⁴	3 x 10 ⁻¹⁹ - 5 x 10 ⁻¹⁹
UV	1 x 10 ⁻⁸ - 4 x 10 ⁻⁷	7.5 x 10 ¹⁴ - 3 x 10 ¹⁶	5 x 10 ⁻¹⁹ - 2 x 10 ⁻¹⁷
Х-гау	1 x 10 ⁻¹¹ - 1 x 10 ⁻⁸	3 x 10 ¹⁶ - 3 x 10 ¹⁹	2 x 10 ⁻¹⁷ - 2 x 10 ⁻¹⁴
Gamma-ray	< 1 x 10 ⁻¹¹	> 3 x 10 ¹⁹	> 2 x 10 ⁻¹⁴

URL: http://imagine.gsfc.nasa.govfc.nasa.gov/docs/science/know_l1/spectrum_chart.html


THERMAL RADIATION

 DEFINED OVER A RANGE OF THE ELECTROMAGNETIC SPECTRUM FROM λ = 0.1 μm TO λ = 100 μm
 VISIBLE IS A SECTION OF THE THERMAL SPECTRUM

http://www.onpointla sers.com/media/upl oad/image/EMwave(2).jpg

THE ELECTROMAGNETIC SPECTRUM

http://amazingspace.stsci.edu/news/archive/2005/03/graphics/em_chart.gif

WAVELENGTH RESONANCE

- MICROWAVE ENERGY IS USED FOR COOKING
- HAS A WAVELENGTH RANGE OF $102 < \lambda < 105$

 IS ABSORBED WITH A HIGH EFFICIENCY BY WATER MOLECULES IN THIS RANGE

RADIATION DIRECTIONALITY

 RADIATION IS NORMALLY EMITTED IN ALL DIRECTIONS FROM A SOURCE, THOUGH IT MAY HAVE A PREFERENTIAL DIRECTION

 RADIATION ALSO IS EMITTED IN PREFERRED WAVELENGTHS, PRODUCING SPECTRA THAT CAN BE USED TO IDENTIFY MATERIALS

BLACKBODY RADIATION

• THE BLACKBODY IS THE IDEAL EMITTER

 THE INTENSITY OF BLACKBODY RADIATION AS A FUNCTION OF WAVELENGTH IS DEFINED BY PLANCK'S

LAW:

$$E_{\lambda,b}(\lambda,T) = \frac{C_1}{\lambda^5 [\exp(C_2 / \lambda T) - 1]}$$

$$WHERE: \quad C_1 = 3.742 \times 10^8 \frac{W \ \mu m}{m^2}$$

$$AND \quad C_2 = 1.439 \times 10^4 \ \mu mK$$

MAXIMUM RADIATION INTENSITY

 THE MAXIMUM INTENSITY AT ANY WAVELENGTH IS OBTAINED BY DIFFERENTIATING PLANCK'S LAW WITH RESPECT TO λ AND CALCULATING THE ROOT FOR THE MAXIMUM

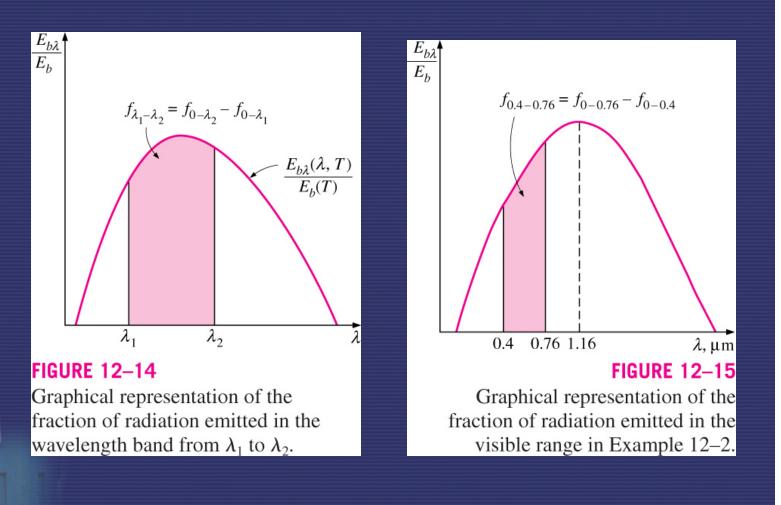
$$C_{3} = (\lambda T)_{MAX} = 2897.8 \,\mu m K$$

- THIS IS WIEN'S DISPLACEMENT LAW
- THIS RELATIONSHIP CAN BE USED TO CALCULATE THE TEMPERATURE OF STARS USING THE HIGHEST INTENSITY WAVELENGTH

TOTAL BLACKBODY EMISSIVE POWER

 INTEGRATION OF PLANCK'S LAW OVER THE RANGE OF λ, YIELDS THE TOTAL BLACKBODY EMISSIVE POWER FOR A GIVEN TEMPERATURE

$$E_{b}(T) = \int_{0}^{\infty} \frac{C_{1}}{\lambda^{5} [\exp(C_{2} / \lambda T) - 1]} d\lambda$$
$$E_{b}(T) = \sigma T^{4}$$
$$WHERE: \ \sigma = 5.67 \times 10^{-8} \frac{W}{M}$$


EMISSION BY WAVELENGTH

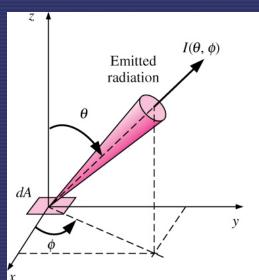
INTENSITY FOR DIFFUSE
 BLACKBODY RADIATION

 $=\frac{E_b}{\pi}$

BAND EMISSION OVER A RANGE OF WAVELENGTHS CAN BE CALCULATED WITH PLANCK'S LAW
IS SUMMARIZED IN TABLE 12-2 AS A FUNCTION OF λT

EMISSION BY WAVELENGTH RANGE

BLACKBODY EMISSION BY λ


 THE RELATIONSHIP FOR THE FRACTION OF EMISSIVE ENERGY FOR A BLACKBODY WITHIN A SPECIFIC RANGE OF WAVELENGTHS IS:

$$f_{\lambda 1-\lambda 2} = \frac{\int_{0}^{\lambda 2} E_{\lambda,b} d\lambda - \int_{0}^{\lambda 1} E_{\lambda,b} d\lambda}{\sigma T^{4}} = f_{0 \to \lambda 2} - f_{0 \to \lambda 1}$$

SOLID ANGLES

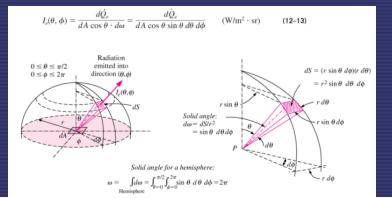
 EMISSION IN A PARTICULAR DIRECTION FROM A SOURCE, dA, IS EVALUATED RELATIVE TO THE ZENITH θ AND AZIMUTH φ ANGLES

 THE SOLID ANGLE, ω, IS DEFINED BY THE SECTION, dS, SWEPT OUT ON A HEMISPHERE AT A SPECIFIC RADIUS, r.

FIGURE 12–16

Radiation intensity is used to describe the variation of radiation energy with direction.

DIFFERENTIAL SOLID ANGLE


• DEFINED IN TERMS OF THE ANGLES AS:

$$d\omega = \frac{dS}{r^2} = \sin\theta \, d\theta \, d\phi$$

WHERE dS IS NORMAL TO THE
AXIS OF THE ANGLE

DIFFERENTIAL EMISSIVITY

- THE SOLID ANGLE HAS UNITS OF
 STERADIANS
- THE PROJECTION OF dA AT A DISTANCE r FROM THE SOURCE AND ON A ZENITH OF φ IS A COSINE RELATIONSHIP

$$dA_n = dA \cos\theta$$

STEFAN-BOLTZMAN DERIVATION

INTENSITY OF RADIATION FROM A BLACKBODY (PLANCK'S LAW)

$$l(v,T) = \frac{2hv^{3}}{c^{2}} \frac{1}{e^{\frac{hv}{kT}} - 1}$$

 Idv IS ENERGY IN FREQUENCY RANGE BETWEEN v AND v+dv, PER UNIT SURFACE AREA PER UNIT TIME PER UNIT SOLID ANGLE

• TOTAL POWER FROM A SURFACE AREA A, THROUGH SOLID ANGLE $d\Omega$ IS

$$Power = I(v,T)Advd\Omega$$

STEFAN-BOLTZMAN DERIVATION

• OVER A HALF SPHERE RECEIVER, POWER PER UNIT AREA IS

$$\frac{P}{A} = \int_{0}^{\infty} I(v, T) dv \int_{0}^{2\pi} d\theta \int_{0}^{\pi/2} \cos \phi \sin \phi d\phi$$
$$= \pi \int_{0}^{\infty} I(v, T) dv = \frac{2\pi h}{c^{2}} \int_{0}^{\infty} \frac{v^{3}}{e^{\frac{hv}{kT}} - 1}$$

 THROUGH SOME SUBSTITUTIONS, THIS EXPRESSION INTEGRATES TO

$$\frac{P}{A} = \frac{2\pi^5 k^4}{15h^3 c^2} T^4 = \left[5.67 * 10^{-8} \frac{W}{m^2 K^4} \right] T^4$$

RADIATION INTENSITY

 THE BLACKBODY, DIFFUSE EMITTED INTENSITY IS DEFINED IN TERMS OF THE SOLID ANGLE

• IRRADIATION, INCIDENT RADIATION, SEE FIGURE 12-20 $\sigma T^4 W$

$$G_{\lambda}(\lambda) = \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda,i}(\lambda,\theta,\phi) \cos\theta \sin\theta \, d\theta \, d\phi$$

 I_{h}

OVER THE ENTIRE SPECTRUM OF
 WAVELENGTHS:

$$G = \int_0^\infty G_\lambda d\lambda$$

RADIATION INTENSITY

 IF THE INCOMING RADIATION IS DIFFUSE, THEN IT IS INDEPENDENT OF θ AND φ, SO THE EQUATIONS BECOME:

 $G_{\lambda}(\lambda) = \pi I_{\lambda,i}(\lambda)$ $G = \pi I_i$

RADIOSITY

- REPRESENTS **ALL** THE RADIANT ENERGY LEAVING A SURFACE (SEE FIGURE 12-21)
- INCLUDES REFLECTED AND EMITTED ENERGY
- CAN BE EXPRESSED IN TERMS OF WAVELENGTH AND ANGLES AS:

$$J_{\lambda}(\lambda) = \int_{0}^{2\pi} \int_{0}^{\pi/2} I_{\lambda,e+r}(\lambda,\theta,\phi) \cos\theta \sin\theta d\theta d\phi$$

 TOTAL RADIOSITY CAN THEN BE EXPRESSED AS:

$$J = \int_0^\infty \int_0^{2\pi} \int_0^{\pi/2} I_{\lambda, e+r}(\lambda, \theta, \phi) \cos\theta \sin\theta \, d\theta \, d\phi \, d\lambda$$

DIFFUSE SURFACE

 IF THE SURFACE IS A DIFFUSE REFLECTOR AND A DIFFUSE EMITTER, THEN RADIOSITY IS INDEPENDENT OF θ AND φ, SO THE EQUATIONS BECOME (SEE CHAP 13)

 $J_{\lambda}(\lambda) = \pi I_{\lambda,e=r}(\lambda)$ $J = \pi I$