Heat Exchanger Analysis

(1) Heat Exchanger Types (2) Heat Exchanger Analysis Methods Overall Heat Transfer Coefficient ofouling, enhanced surfaces oLMTD Method Effectiveness-NTU Method

HX Classifications

Heat Exchanger Types Concentric tube (double piped)

Heat Exchanger Types Shell and Tube

Heat Exchanger Types

Compact Heat Exchangers

Heat Exchanger Types Cross Flow

finned versus unfinned mixed versus unmixed

Heat Exchanger Types

Heat Exchanger Types

Heat Exchanger Analysis

- Overall Heat Transfer Coefficient
 LMTD
- Effectiveness-NTU

Overall Heat Transfer Coefficient

The overall coefficient is used to analyze heat exchangers. It contains the effect of hot and cold side convection, conduction as well as fouling and fins.

$$\frac{1}{UA} = \frac{1}{(\eta_o hA)_c} + \frac{R''_{f,c}}{(\eta_o A)_c} + R_w + \frac{R''_{f,h}}{(\eta_o A)_h} + \frac{1}{(\eta_o hA)_h}$$

 R''_f = fouling factor

Enhanced Surfaces

Log-Mean Temperature Difference To relate the total heat transfer rate to inlet and outlet fluid temperatures. Apply energy balance:

Log-Mean Temperature Difference

We can also relate the total heat transfer rate to the temperature difference between the hot and cold

fluids.

$$let \quad \Delta T = T_h - T_c$$
$$Q = UA\Delta T_{LM}$$

The log mean temperature difference depends on the heat exchanger configuration

LMTD Parallel-Flow HX

$$Q = UA\Delta T_{LM} \qquad \Delta T_{LM} = \frac{\Delta T_2 - \Delta T_1}{\ln(\Delta T_2 / \Delta T_{1})}$$

Where for Parallel Flow :

$$\Delta T_1 = T_{h,1} - T_{c,1} = T_{h,i} - T_{c,i}$$
$$\Delta T_2 = T_{h,2} - T_{c,2} = T_{h,o} - T_{c,o}$$

LMTD Counter-Flow HX

$$Q = UA\Delta T_{LM} \qquad \Delta T_{LM} = \frac{\Delta T_2 - \Delta T_1}{\ln(\Delta T_2 / \Delta T_1)}$$

Where for Counter Flow :
$$\Delta T_1 = T_{h,1} - T_{c,1} = T_{h,i} - T_{c,o}$$
$$\Delta T_2 = T_{h,2} - T_{c,2} = T_{h,o} - T_{c,i}$$

 $\Delta T_{lm,CF} > \Delta T_{lm,PF}$ FOR SAME U: $A_{CF} < A_{PF}$

LMTD- Multi-Pass and Cross-Flow

Apply a correction factor to obtain LMTD $Q = UA\Delta T_{LM}$ $\Delta T_{LM} = F\Delta T_{LM,CF}$

t: Tube Side

LMTD Method

Sizing a Heat Exchanger:

- Calculate Q and the unknown outlet temperature.
- Calculate DT_{Im} and obtain the correction factor (F) if necessary
- Calculate the overall heat transfer coefficient.
- o Determine A.
- The LMTD method is not as easy to use for performance analysis....

• Define Q_{max} for $C_c < C_h$ $Q_{max} = C_c(T_{h,i} - T_{c,i})$ for $C_h < C_c$ $Q_{max} = C_h(T_{h,i} - T_{c,i})$

or
$$Q_{\max} = C_{\min}(T_{h,i} - T_{c,i})$$

 $\mathcal{E} = \frac{q}{q_{\max}} = \frac{C_h(T_{h,i} - T_{h,o})}{C_{\min}(T_{h,i} - T_{c,i})} = \frac{C_c(T_{c,o} - T_{c,i})}{C_{\min}(T_{h,i} - T_{c,i})}$

$$Q = \varepsilon C_{\min}(T_{h,i} - T_{c,i})$$

• For any heat exchanger:

 $\epsilon = f(NTU, C_{min}/C_{max})$

 NTU (number of transfer units) designates the nondimensional heat transfer size of the heat exchanger:

$$NTU = \frac{UA}{C_{\min}}$$

Cross flow (single pass)

Both fluids unmixed $\varepsilon = 1 - \exp\left[\left(\frac{1}{C_r}\right)(NTU)^{0.22} \left\{\exp\left[-C_r(NTU)^{0.78}\right] - 1\right\}\right]$ C_{\max} (mixed),
 C_{\min} (unmixed) $\varepsilon = \left(\frac{1}{C_r}\right)(1 - \exp\left\{-C_r[1 - \exp\left(-NTU\right)]\right\})$ C_{\min} (mixed),
 C_{\max} (unmixed) $\varepsilon = 1 - \exp\left(-C_r^{-1}\{1 - \exp\left[-C_r(NTU)\right]\}\right)$ All exchangers ($C_r = 0$) $\varepsilon = 1 - \exp\left(-NTU\right)$

PERFORMANCE ANALYSIS

- Calculate the capacity ratio $C_r = C_{min}/C_{max}$ and NTU = UA/C_{min} from input data
- Determine the effectiveness from the appropriate charts or ε-NTU equations for the given heat exchanger and specified flow arrangement.
- \circ When ϵ is known, calculate the total heat transfer rate
- Calculate the outlet temperature.

SIZING ANALYSIS

- When the outlet and inlet temperatures are known, calculate ϵ .
- Calculate the capacity ratio $C_r = C_{min}/C_{max}$
- Calculate the overall heat transfer coefficient, U
- $\circ\,$ When $\epsilon\,$ and C and the flow arrangement are known, determine NTU from the $\epsilon\text{-NTU}$ equations.
- When NTU is known, calculate the total heat transfer surface area.

The Homework

