Kinematics of Machines (NMIE-502)

MECHANISM WITH LOWER PAIRS

Pantograph

Pantograph

- Pantographs are used for reducing or enlarging drawings and maps. They are also used for guiding cutting tools or torches to fabricate complicated shapes.
- In the mechanism shown in fig. path traced by point A will be magnified by point E to scale, as discussed below.
- In the mechanism shown, $\mathrm{AB}=\mathrm{CD} ; \mathrm{AD}=\mathrm{BC}$ and OAE lie on a straight line.
- When point A moves to A^{\prime}, E moves to E' and OA'E' also lies on a straight line.
$\triangle O D A \equiv \triangle O C E$ and $\triangle O D^{\prime} A^{\prime} \equiv \triangle O C^{\prime} E^{\prime}$.
$\therefore \frac{O D}{O C}=\frac{O A}{O E}=\frac{D A}{C E}$ And $\frac{O D^{\prime}}{O C^{\prime}}=\frac{O A^{\prime}}{O E^{\prime}}=\frac{D^{\prime} A^{\prime}}{C^{\prime} E^{\prime}}$
But, $\frac{O D}{O C}=\frac{O D^{\prime}}{O C^{\prime}} ; \therefore \frac{O A}{O E}=\frac{O A^{\prime}}{O E^{\prime}} ; \therefore \Delta O A A^{\prime} \equiv \triangle O E E$
$\therefore E E^{\prime} / / A A^{\prime}$
And $\frac{E E^{\prime}}{A A^{\prime}}=\frac{O E}{O A}=\frac{O C}{O D}$
$\therefore E E^{\prime}=A A^{\prime}\left(\frac{O C}{O D}\right)$
Where $\left(\frac{O C}{O D}\right)$ is the magnification factor

Figure The pantograph linkage.

Condition for Exact Straight Line Motion Mechanisms

Let O be a point on the circumference of a circle of diameter OP.
Let $O A$ be any chord and B is a point on $O A$ produced, such that

$$
O A \times O B=\text { constant }
$$

Then the locus of a point B will be a straight line perpendicular to the diameter $O P$.

- Draw BQ perpendicular to OP produced. Join AP. The triangles OAP and OBQ are similar.

	\therefore	$\frac{O A}{O P}$	$=\frac{O Q}{O B}$
or		$O P \times O Q$	$=O A \times O B$
or		$O Q$	$=\frac{O A \times O B}{O P}$

- But $O P$ is constant as it is the diameter of a circle, therefore, if $O A \times O B$ is constant, then OQ will be constant. Hence the point B moves along the straight path BQ wbich is perpendicular to OP.

Peaucellier exact straight line motion mechanism:

- The pin at A is constrained to move along the circumference of a circle with the fixed diameter OP, by means of the link $O_{1} A$.
- In Fig., $A C=C B=B D=D A ; O C=O D$; and $O O_{1}=O_{1} A$
- It may be proved that the product $O A \times O B$ remains constant, when the link $O_{1} A$ rotates. Join $C D$ to bisect $A B$ at R . Now from right angled triangles $O R C$ and $B R C$, we bave

and | $O C^{2}$ | $=O R^{2}+R C^{2}$ |
| ---: | :--- |
| $B C^{2}$ | $=R B^{2}+R C^{2}$ |
| Subtracting equation $(i i)$ from (i), we have | |
| $O C^{2}-B C^{2}$ | $=O R^{2}-R B^{2}$ |
| | $=(O R+R B)(O R-R B)$ |
| | $=O B \times O A$ |

Since $O C$ and $B C$ are of constant length, therefore the product $O B \times O A$ remains constant. Hence the point B traces a straight path perpendicular to the diameter $O P$.

Watt's Parallel Motion

- The exact position of E^{\prime} is found by first assuming a small rotation of the bars so that B moves to B^{\prime} and C to C^{\prime}.
- Let $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ cut BC or BC (produced) in E^{\prime}. Then E^{\prime} will be the generating point for the straight line.
- To prove this we therefore need to show that the ratio

is constant for all small rotations of $A B$ and CD about their mid-positions.

5.Hooke's joint

Hooke's joint

6.Steering gear mechanism

Condition for perfect steering

Ackermann steering gear mechanism

Steering Gear Mechanism

- The steering gear mechanism is used for changing the direction of two or more of the wheel axles with reference to the chassis, so as to move the automobile in any desired path.
- Usually the two back wheels have a common axis, which is fixed in direction with reference to the chassis and the steering is done by means of the front wheels.
- In automobiles, the front wheels are placed over the front axles, which are pivoted at the points A and B, as shown in Fig. These points are fixed to the chassis.
- The back wheels are placed over the back axle, at the two ends of the differential tube. When the vehicle takes a turn, the front wheels along with the respective axles turn about the respective pivoted points.

The back wheels remain straight and do not turn. Therefore, the steering is done by means of front wheels only.

Condition for perfect steering

- In order to avoid skidding (i.e. slipping of the wheels sideways), the two front wheels must turn about the same instantaneous centre I which lies on the axis of the back wheels.
- If the instantaneous centre of the two front wheels do not coincide with the instantaneous centre of the back wheels, the skidding on the front or back wheels will definitely take place, which will cause more wear and tear of the tyres.
- Thus, the condition for correct steering is that all the four wheels must turn about the same instantaneous centre.
- The axis of the inner wheel makes a larger turning angle than the angle subtended by the axis of outer wheel.

- Condition for perfect steering

Let

$$
\begin{aligned}
& a=\text { Wheel track, } \\
& b=\text { Wheel base, and } \\
& c=\text { Distance between the pivots } A \text { and } B \text { of the front axle. }
\end{aligned}
$$

Now from triangle $I B P$,

$$
\cot \theta=\frac{B P}{I P}
$$

and from triangle $I A P$,

$$
\cot \phi=\frac{A P}{I P}=\frac{A B+B P}{I P}=\frac{A B}{I P}+\frac{B P}{I P}=\frac{c}{b}+\cot \theta \quad \ldots(\because I P=b)
$$

$\therefore \cot \phi-\cot \theta=c / b$

This is the fundamental equation for correct steering. If this condition is satisfied, there will be no skidding of the wheels, when the vehicle takes a turn.

Ackermann steering gear mechanism

- In Ackerman steering gear, the mechanism $A B C D$ is a four bar crank chain, as shown in Fig.
- The shorter links $B C$ and $A D$ are of equal length and are connected by binge joints with front wheel axles. The longer links $A B$ and $C D$ are of unequal length. The following are the only tbree positions for correct steering.

1. When the vehicle moves along a straight path, the longer links $A B$ and $C D$ are parallel and the shorter links $B C$ and $A D$ are equally inclined to the longitudinal axis of the vebicle, as shown by firm lines in Fig..
2. When the vehicle is steering to the left, the position of the gear is shown by dotted lines in Fig. In this position, the lines of the front wheel axle intersect on the back wheel axle at I, for correct steering.
3. When the vehicle is steering to the right, the similar position may be obtained.

