Machine design-what is it?

Subset of Mechanical design... which is
Subset of Engineering design... which is
Subset of Design....which is
Subset of the topic of Problem Solving
What is a machine? ... a combination of resistant bodies arranged so that by their means the mechanical forces of nature can be compelled to do work accompanied by certain determinate motions.

Big picture

The Design Process

-Recognize need/define problem

- Create a solution/design
- Prepare model/prototype/solution
-Test and evaluate
- Communicate design

Important to review the fundamentals of....

- Statics
-Dynamics
- Materials/material properties
- elasticity
-homogeneity
- isotropy
-mass and area parameters

Lets begin our brief review

$\mathrm{T}=\mathrm{I} \propto$ rotary motion equivalent of $\mathrm{F}=\mathrm{MA}$
$\mathrm{I}=$ mass moment of inertia $\rightarrow \int \mathrm{M}^{*} \mathrm{r}^{\wedge} 2 \mathrm{dM}$ not to be confused with the area moment of inertia which we will discuss later.

Remember the parallel axis theorem

If Icg is a mass moment of inertia about some axis "aa" thru the centroid (cg) of a body then the moment of inertia about an axis "bb" which is parallel to "aa" and some distance "d" away is given by:
$\mathrm{Ibb}=\operatorname{Icg}+\left(\mathrm{d}^{\wedge} 2\right)^{*} \mathrm{M} \quad$ where M is the mass
Note: This same theorem also works for area moments of inertia in the same way

More generally $\mathrm{I}=\mathrm{M} \mathrm{k}^{\wedge} 2$ where k is called the radius of gyration which can be thought of as the radius where all the mass could concentrated (relative to the axis of interest) to give the same moment of inertia I that the body with distributed mass has.

For a solid cylinder
$\mathrm{I}=\mathrm{M}\left(\mathrm{k}^{\wedge} 2\right)=1 / 2 \mathrm{M}\left(\mathrm{R}^{\wedge} 2\right)$ where
$\mathrm{R}=$ radius
$\mathrm{M}=$ mass
$\mathrm{K}=$ radius of gyration
For a hollow cylinder
$\mathrm{I}=\mathrm{M}\left(\mathrm{k}^{\wedge} 2\right)=1 / 2 \mathrm{M}\left(\mathrm{R} 1^{\wedge} 2+\mathrm{R} 2^{\wedge} 2\right)$

Note: this intuitively seems like it should be (R1^2-R2^2) but that is not the case. Deriving this is a good review of basic calculus.

Short problem...take a few minutes to work on this.

A round flywheel 20 inches diameter has a mass of 100 kgm and is subjected to an input torque of 1000 Nm . What is the rate of angular acceleration?

Solution synthesis:
 $T=I \alpha$ therefore $\alpha=T / I$

$$
\begin{aligned}
& \text { But } \mathrm{I}=(1 / 2) \mathrm{M} \mathrm{r}^{2}= \\
& .5^{*} 100 \mathrm{kgm} *(10 / 39.37 \mathrm{~m})^{\wedge} 2 \\
& =3.225 \mathrm{~kg}-\mathrm{m}^{\wedge} 2 \\
& \\
& \begin{array}{l}
\alpha=1000 \mathrm{~kg}-\mathrm{m}^{\wedge} 2 / \mathrm{s}^{\wedge} 2 / 3.225 \mathrm{~kg}-\mathrm{m}^{\wedge} 2 \\
\alpha=310 \mathrm{rad} / \mathrm{s}^{\wedge} 2
\end{array}
\end{aligned}
$$

(Note: Must remember $1 \mathrm{~N}=1 \mathrm{Kg} * \mathrm{~m} / \mathrm{s}^{2}$ also remember that radian is dimensionless...length/length)

Area Moment of inertia for some shapes

Review problem \#135

A hollow structural tube has outside dimensions of 8 inches x 12 inches. The tube thickness is .5 inches on all sides. What is the maximum (area) moment of inertia (in ${ }^{4}$)?

Solution synthesis: We know $\mathrm{I}=\mathrm{bh}^{3} / 12$ for a rectangular section.
Solution execution: We must decide on the max I. Will Ixx or Iyy be larger. For Ixx, $b=8$ and $h=12$. But for Iyy, $b=12$ and $\mathrm{h}=8$ so it is obvious that Ixx will be
larger. Since the tube is hollow we must subtract out the contribution of the material that does not exist....the rectangular air space on the inside.
Hence the solution is:
I=boho ${ }^{3} / 12-\mathrm{bihi}^{3} / 12$
Where bo $=8, \mathrm{ho}=12, \mathrm{bi}=7, \mathrm{hi}=11$
This gives $\mathrm{I}=(8)\left(12^{\wedge} 3\right) / 12-(7)\left(11^{\wedge} 3\right) / 12$
$\mathrm{I}=1152-776.4=375.6 \ldots$.the answer (d)

Factors of safety

$$
\mathrm{N}=\left[\frac{\text { allowable stress (or load) of material }}{\text { Working or design or actual stress }}\right]
$$

More generally
$\mathrm{N}=$ load which will cause failure
Load which exits

Often safety factor is a policy question. Here are some rules Of thumb.

Recommended N	materials	loads	environ. Cond.
$1.25-1.5$	very reliable	certain	controlled
$1.5-2$	well known	det. Easily	fairly const.
$2-2.5$	avg.	Can be det.	Ordinary
$2.5-3$	less tried	""	'"
$3-4$	untried matl's	""	""
$3-4$	well known	uncertain	uncertain

Design relationships for elastic design

Axial loading

$$
\nabla_{\text {max }}=S y / N=F / A
$$

$$
\text { Where } \mathrm{F}=\text { axial force }
$$

$\mathrm{A}=$ cross sectional area

Design relationships for elastic design

$$
\begin{aligned}
& \text { 有 }{ }^{A} \text { Bending } \sigma_{m_{A X}}=\frac{5 y / N}{}=\frac{m C}{I}=\mathrm{M} / \mathrm{S} \\
& \text { Where } \\
& \nabla_{m a x}=\text { max allowable design stress } \\
& \text { Sy = yield stress of material, tensile } \\
& \mathrm{N}=\text { safety factor } \\
& \mathrm{M}=\text { bending moment } \\
& \mathrm{C}=\text { distance from neutral surface to outer fiber } \\
& \mathrm{I}=\text { area moment of inertia about neutral axis } \\
& \mathrm{S}=\mathrm{I} / \mathrm{C} \text { referred to as the section modulus }
\end{aligned}
$$

Hooke's law/stresses/strains

Problem: a round metal rod $1 "$ dia is 10 ft long. A tensile load of 10000 lbf is applied and it is determined that the rod elongated about 0.140 inches. What type of material is the bar likely made of? How much did the diameter of the rod change when the load was applied ?

Plan:

We will apply Hooke's law to determine what the modulus of elasticity E is. Then we should also be able to apply the same law to determine the change in diameter of the rod. We recall Hooke's law as follows

$$
\begin{gathered}
\varepsilon_{\mathrm{x}}=\sigma_{\mathrm{x}} / \mathrm{E}-v \sigma_{\mathrm{y}} / \mathrm{E}-v \sigma_{\mathrm{z}} / \mathrm{E} \\
\varepsilon_{\mathrm{y}}=-v \sigma_{\mathrm{x}} / \mathrm{E}+\sigma_{\mathrm{y}} / \mathrm{E}-v \sigma_{\mathrm{z}} / \mathrm{E} \\
\varepsilon_{\mathrm{z}}=-v \sigma_{\mathrm{x}} / \mathrm{E}-v \sigma_{\mathrm{y}} / \mathrm{E}+\sigma_{\mathrm{z}} / \mathrm{E}
\end{gathered}
$$

Where v is Poisson's Ratio
v is about 0.3 for most metals

For tensile load $\sigma_{y}=\sigma_{z}=0$
σ_{x} for the tensile load $=\mathrm{P} / \mathrm{A}=10000 /\left(\pi^{*} 1^{2} / 4\right)=12732 \mathrm{psi}$ Since $\sigma=\mathrm{E} \varepsilon$ we know that $\mathrm{E}=\sigma / \varepsilon$ both of which we now know. $\mathrm{E}=12732 /(.140 / 120)=10.9 \times 10^{6} \mathrm{psi} \Longleftrightarrow$ Alum.

Now the change in dia... $\Delta \mathrm{Dia}=\left(\varepsilon_{\mathrm{y}}\right)(\mathrm{Dia})$
$\varepsilon_{\mathrm{y}}=-v \sigma_{\mathrm{x}} / \mathrm{E}=-v \varepsilon_{\mathrm{x}}=-.3(.14 / 120)$
$\varepsilon_{\mathrm{y}}=-.00035 \mathrm{in} / \mathrm{in}$
$\therefore \Delta \mathrm{Dia}=\left(\varepsilon_{\mathrm{y}}\right)(\mathrm{Dia})=(.00035)(1)$
$\Delta \mathrm{Dia}=-.00035$ inches

Loads and stresses example

Under certain conditions a wheel and axle is subjected to the loading shown in the sketch below.
a) What are the loads acting on the axle at section A-A?
b) What maximum direct stresses are developed at that section?

Plan:

-Sum forces and moments
-Compute bending moment
-Compute bending stress
-Compute tensile or compressive stress

Execution:

Summing Fx we determine the axial tensile load at $\mathrm{A}-\mathrm{A}=300 \mathrm{lbf}$ Summing Fy direct shear load = 1000 lbf Summing moments about the A-A section at the neutral axis
We find the bending moment $=1000 * 3+300 * 15=7500 \mathrm{lb}$-in

$$
\begin{aligned}
\sigma \text { Bending } & =\frac{m c}{I} \text { Where } I=\frac{\pi d^{4}}{64}=\frac{\pi r^{4}}{4} \\
& =\frac{m r}{\left(\pi \frac{r^{4}}{4}\right)} \text { Where } r=c \\
& =\frac{4 m}{\pi r^{3}}=\frac{4(7500)}{\pi(.5)^{3}}=76394 \text { PSI } \\
\sigma \text { tensile }= & \frac{P}{A}=\frac{300}{A}=\frac{300}{\left(\frac{\pi d^{2}}{4}\right)}=382 P S I
\end{aligned}
$$

\therefore Max Stress at $A-A=76394+382=76776$ PSI

Design relationships for elastic design

Combined stress

In a two dimensional stress field (where $\sigma_{3} \Omega \sigma_{3}=0$) the principal stresses on the principal planes are given by:

$$
\begin{aligned}
& \sigma_{1} \text { and } \sigma_{2}=\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right) / 2 \pm\left[\left(\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2\right)^{2}+\tau_{\mathrm{xy}}{ }^{2}\right]^{1 / 2} \\
& \tau_{\max }= \pm\left[\left(\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right) / 2\right)^{2}+\tau_{\mathrm{xy}}{ }^{2}\right]^{1 / 2} \\
& \text { or } \\
& \tau_{\max =\text { largest }}\left[\begin{array}{l}
\left|\sigma_{1}-\sigma_{2}\right| / 2 \\
\left|\sigma_{1}\right| / 2 \\
\left|\sigma_{2}\right| / 2
\end{array}\right]
\end{aligned}
$$

Combined stress continued

In combined stresses problems involving shaft design we are generally dealing with only bending and torsion i.e., where $\nabla_{y}=0$

In this case

$$
\begin{aligned}
& \sigma_{1} \text { and } \sigma_{2}=\sigma_{\mathrm{x}} / 2 \pm\left[\left(\sigma_{\mathrm{z}} / 2\right)^{2}+\tau_{\mathrm{xy}}^{2}\right]^{1 / 2} \\
& \text { and } \\
& \tau_{\max }=\left[\left(\sigma_{\mathrm{x}} / 2\right)^{2}+\tau_{\mathrm{xy}}^{2}\right]^{1 / 2}
\end{aligned}
$$

Where $\sigma_{\mathrm{x}}=\mathrm{Mc} / \mathrm{I}$ or $32 \mathrm{M} /\left(\pi \mathrm{D}^{3}\right)$ for solid circular shaft

And $\tau_{\mathrm{zx}}=\mathrm{Tr} / \mathrm{J}=16 \mathrm{~T} /\left(\pi \mathrm{D}^{3}\right)$ for solid circular shaft

Theories of failure

1) Maximum normal stress

Based on failure in tension or compression applied to materials strong in shear, weak in tension or compression.

Static loading

a) Design based on yielding, keep:

$$
\nabla_{\text {MAX }} \leq 5 y / N \quad \nabla_{\text {compression }} \leq \frac{\sigma_{y}(\text { compR })}{N}
$$

(for materials with different compressive and tensile strengths)
b) For brittle materials (no yield point) ...design for:

$$
\nabla_{\text {max }} \leqslant \frac{S_{u}}{N} \quad \nabla_{\substack{\text { mAX } \\ \text { COMPR }}} \leq \frac{s_{u(\text { EAMPA }}}{N}
$$

Theories of failure cont'd

Fatigue loading (fluctuating loads)

$$
\mathrm{Se}=\mathrm{Cf}^{*} \mathrm{Cr}^{*} \mathrm{Cs}^{*} \mathrm{Cw}^{*} \mathrm{Sn}^{\prime}
$$

Where Sn' = endurance limit $\mathrm{Se}=$ allowable working stress or modified endurance limit
Note: stress concentration factor Kf is not in this formula for $\mathrm{Se} . \mathrm{Kf}$ is included later to be part specific

Soderberg failure line for fatigue

Maximum shear theory of failure

For design with ductile materials and it is conservative and on the premise: failure occurs when the maximum (spatial) shear stress exceeds the shear strength. Failure is by yielding.

Formulae for sizing a shaft carrying bending and torsion

For a hollow shaft...."Do"=outside dia, "Di" = inside dia

$$
D_{o}^{3}\left(1-\left(\frac{D_{i}}{D_{o}}\right)^{4}\right)=\frac{32 N}{\pi S_{y p}} \sqrt{\left(K_{s b} \frac{S_{y p}}{S_{e}} M\right)^{2}+\left(K_{s t} T\right)^{2}}
$$

For a solid shaft $\mathrm{Di}=0$ and the equation becomes:

$$
D_{o}^{3}=\frac{32 N}{\pi S_{y p}} \sqrt{\left(K_{s b} \frac{S_{y p}}{S_{e}} M\right)^{2}+\left(K_{s} T\right)^{2}}
$$

Where "Do" will be the smallest allowable diameter based on max shear theory. M is the bending moment and T is the torsion T is the mean torque assumed to be steady here... and M is the Bending moment which becomes the fluctuating load as the shaft Rotates.

Other shaft sizing considerations

Other criterion of shaft design may be requirements on torsional Rigidity (twist) and lateral rigidity (deflection)

Torsional rigidity
Theta $=584^{*} \mathrm{~T}^{*} \mathrm{~L} /\left(\mathrm{G}^{*}\left(\mathrm{Do}^{\wedge} 4-\mathrm{Di}^{\wedge} 4\right)\right)$ for hollow circ. shaft
Theta $=584 * \mathrm{~T}^{*} \mathrm{~L} /\left(\mathrm{G}^{*}\left(\mathrm{Do}^{\wedge 4))}\right.\right.$ for solid circ. shaft

Where:

theta $=$ angle of twist, degrees
$\mathrm{L}=$ length (carrying torque), in inches
$\mathrm{T}=$ torsional moment, lb -in
$\mathrm{G}=$ torsional (shear) modulus of elasticity
($11.5 \times 10^{\wedge} 6 \mathrm{psi}$, steels) ($3.8 \times 10^{\wedge} 6 \mathrm{psi}$, Al alloys
$\mathrm{D}=$ shaft diameter, inches

Review problem \#110

The unit below drives a grinding operation. Bearings are ball units in self-aligning pillows. Igroring tatigue and using a factor of safety of 2.0 for the given chain drive, the appropriate shalt diameter in inches for cold drawn AISI 1018 steel (untreated) is most nearly:
(a) 1.00
(b) 1.25
(c) 1.50
(d) 2.00

Review problem \#110
Solution synthesis: We are not asked to design for fatigue life so we are sizing the shaft as if a static load were applied. There are two types of loads in the shaft 1) a bending moment due to the overhang at the right bearing and 2) the torsion load determined by the power transmitted.
We must compute the torque to get the chain force applied to the sprocket (shaft). We know Hp=TN/63025 where N is RPM and T is in lb-in. The gives
$\mathrm{T}=\mathrm{Hp}(63025) / \mathrm{N}=20(63025) / \mathbf{1 0 0 0}=$ $1260.5 \mathrm{lbf}-\mathrm{in}$.

We now must know the pitch radius of the sprocket...all we are told is that the we have a 40 tooth sprocket for a \#80 roller chain. How do we compute the pitch diameter?
\#80 chain has a pitch of $8(1 / 8)$ inches $=1$ in. So the circumference of the sprocket must be (40teeth)(1in pitch)= $\mathbf{4 0}$ inches pitch circum.

Thus the pitch dia Pd=Circum/ π $\mathrm{Pd}=40 / \pi=12.74$ "
Hence the pitch radius $\mathrm{R}=\mathrm{Pd} / 2=6.37^{\prime \prime}$

The force in the chain results in the torque, $T=F * R \Rightarrow F=1260 / 6.37=197.8$ lbf

Slack side force $=$ zero
From the FBD of the shaft

Bending moment $=(\mathbf{4})(\mathbf{1 9 7 . 8})=791.2$ Torsion moment= 1260 lbf-in

We are now ready to compute the required size of shaft. For this we find a shaft sizing equation like the
following. $D_{o}^{3}=\frac{32 N}{\pi S_{p p}} \sqrt{ }\left(K_{s b} \frac{S_{s p}}{S_{e}} M\right)+\left(K_{s} T\right)^{2}$

Since we are ignoring fatigue let Se=Syp
The shock factors Ksb and Kst must be chosen for the application. The author of this problem used 3.0 for both. This would indicate fairly severe shock loads anticipated.

We must also be able to determine the yield stress for 1018 cd steel. For this we must consult a reference book. The following table is found in Mark's Handbook for Mech. Engrs. (9 ${ }^{\text {th }}$ ed)

Table 6.2.15 Average Mechanical Properites of Cold-Drawn Steel

$\begin{aligned} & \text { AIS1 } \\ & \text { No. } \end{aligned}$	Tensile strength		Yield strength		Elong in 50 (2 in
	MPa	$\begin{aligned} & 1,000 \\ & \mathrm{lb} / \mathrm{in}^{2} \end{aligned}$	MPa	$\begin{gathered} 1,000 \\ \mathrm{lb} / \mathrm{in}^{2} \end{gathered}$	
1010	462	67	379	55.0	25
1015	490	71	416	60.3	22
1020	517	75	439	63.7	20
1025	552	80	469	68.0	18
1030	600	87	509	73.9	17
1035	634	92	539	78.2	17
1040	669	97	568	82.4	16
1045	703	102	598	86.7	15
1117	552	80	469	68.0	19
1118	569	82.5	483	70.1	18
1137	724	105	615	89.2	16
1141	772	112	656	95.2	14

Sizes 16 to 50 mm (X to 2 in) diam, test specimens $50 \times 13 \mathrm{~mm}(2 \times 0.505 \mathrm{in})$.
SoURC:E: ASM "Mctals I landherok."

We note that 1018 is not listed but if we interpolate between $1020 \& 1015$ we could get an approximate $\mathrm{Syp}=62000 \mathrm{psi}$.
Thus applying the sizing equation we get:
$\operatorname{Do}^{3}=\frac{(\mathbf{3 2})(2) \sqrt{(3 * 791)^{2}+\left(3^{* 1260}\right)^{2}}}{(\pi)(62000)}$
Thus $\mathrm{Do}^{3}=1.467$
Do $=1.14 \Rightarrow$ closest ans. $=1.25^{\prime \prime}$

Practice question: If you were asked to sketch the shear and moment diagrams for the shaft in Problem \#110 above could you do it? Here is the FBD again:

Take a couple of minutes to see if you can do this...

> Solution: Depending on the wording of such a problem we may need to determine the bearing reaction loads if we are asked to label the magnitudes of shear and moment at the load points. So in this case we solve for the bearing reaction loads Rl and Rr (left and right) By noting that $\sum \mathrm{Fy}=0$ thus $\mathrm{Rl}+\mathrm{Rr}-197.8=0$ and to solve for these two unknowns we need another equation... we know also that
> \sum Moments $=0$ so summing about the left bearing....20Rr-(197.8)(24)=0 gives $\mathrm{Rr}=237.36 \mathrm{lbf}$ hence $\mathrm{Rl}=-237.36+197.8=-39.6 \mathrm{lbf}$

Shear \square -39.6	

Moment is the integral of the shear

Shear and Moment sign conv.

- Positive shear

- Negative shear
- Positive moment

- Negative moment

Review Problem 513

Given: Full Bridge hookup $G F=2.08$
$\mathrm{Vex}=2.5 \mathrm{~V}$
Implement is beam 3 " deep x .5 " wide
Beam is steel
Load applied $1 \mathrm{ft}=12$ in from gages
For load, the output $\mathrm{Vo}=120 \mu \mathrm{~V}$
What is the load (resistance force) in pounds?

Synthesis:----what do we know? (note error in diagram of bridge, output is Vo not Vex)
For full bridge circuit $\mathrm{Vo} / \mathrm{Vex}=\mathrm{GF} * \varepsilon$
$\mathrm{E}=30 \times 10^{6} \mathrm{PSI}$ for steel
$\sigma=\mathrm{E}^{*} \varepsilon$
For beam we are measuring strain due to bending moment $\sigma=\mathrm{Mc} / \mathrm{I}$ for bending where
$\mathrm{M}=$ bending moment
$c=$ distance neutral axis to surface
$I=$ area moment of inertia of beam
cross section

Solution Plan: compute $\sigma=\mathrm{f}(\mathrm{F}) \Rightarrow \varepsilon=\mathrm{f}(\mathrm{F}) \Rightarrow \mathrm{Vo}=\mathrm{f}(\mathrm{F})$ then

 solve for F .
$\mathrm{M}=12 \mathrm{~F}, \mathrm{C}=1.5, \mathrm{I}=\mathrm{bh}^{3} / 12=(.5)(3)^{3} / 12=13.5 / 12$

$$
\begin{aligned}
\therefore \sigma & =(12 \mathrm{~F})(1.5) /(13.5 / 12)=(12)(12)(1.5)(\mathrm{F}) / 13.5 \\
& =\left(30 \mathrm{x} 10^{6}\right)(\varepsilon)
\end{aligned}
$$

$\therefore \varepsilon=\left(0.533 \times 10^{-6}\right)(\mathrm{F})$ but $\varepsilon=\mathrm{Vo} /(\mathrm{Vex} * \mathrm{GF})=23.1 \mu \varepsilon$
Thus $\left(0.533 \times 10^{-6}\right)(\mathrm{F})=23.1 \times 10^{-6}$

$$
\mathrm{F}=43.27 \mathrm{lbf}
$$

Problem: If the above implement problem had been given this same Vo for a half-bridge circuit what would have been the force acting on the implement?

Solution: For a half bridge $\mathrm{Vo} / \mathrm{Vex}=-\mathrm{GF}^{*} \varepsilon / 2$

Figure 6. Half-Bridge Circuit

Here is an excellent discussion of strain gage basics:
http://zone.ni.com/devzone/cda/tut/p/id/3642

Thus for the same $\mathrm{Vo} \Rightarrow \varepsilon$ must be twice a large So if ε is twice as large the load is must be twice as large.

Column buckling

A hydraulic actuator is needed to provide these forces: minimum force in contraction... 4000 lb . Maximum force in extension (push) ...8000lb. The rod is made of steel with a tension or compression yield strength of 40,000 psi. Assume a hydraulic system pressure of 2000 psi.
a. What nominal (nearest $1 / 16^{\prime \prime}$) diameter rod is required for a safety factor of 5 and what nominal bore?
b. What size piston is needed?

We sketch the cylinder as shown here:

With 8000 lbs of push capability we must be concerned about possible buckling of the rod in its most vulnerable position which would be at full extension to 20 " length. We will not worry about the cylinder itself buckling and concern ourselves with the rod.
-What do you recall about solving a buckling problem?
-Lets review a few basics

$$
A, I_{x x}, \Omega_{n}
$$

SLENDERNESS RATIO
$n_{n}=\sqrt{I_{x \times} / A}$
-Is the rod considered to be long or short column?
-What are the end conditions?
-We must design for Pallowable $=8000 \mathrm{lbs}=\mathrm{Pcr} / \mathrm{N}$
-But N the safety factor $=5$ so $\mathrm{Pcr}=40000 \mathrm{lbs}$
Recall from buckling theory:

THEORETICAL
$1 / 4$
1
2
4
RECOMMENDED
$1 / 4$
1
1.2
1.2

SUMmARY
enter

$$
\frac{P_{c \Omega}}{A}=\left\{\begin{array}{l}
\frac{C \Pi^{2} E I}{A L^{2}}=\frac{C \Pi^{2} E}{\left(L / \Lambda_{x}\right)^{2}} \text { for } L / \Omega_{x} \geq \sqrt{\frac{2 C \pi^{2} E}{S y}} \\
J B \text { JohNson } \\
S y-\frac{1}{C E\left(\frac{S y}{2 H}\right)^{2}\left(\frac{L}{\Omega_{x}}\right)^{2} \text { for } L / \Omega_{x}<\sqrt{\frac{2 C \pi^{2} E}{\delta y}}} \text { : }
\end{array}\right.
$$

Plan:

-In a typical problem we would determine if the column is long or short then apply the Euler or Johnson equ. accordingly but in our case here we are designing the size of the column and the size information is not given so what do we do?
-Piston diameter must be determined based on forces required and the system pressure and the rod size.

Execution:

Since we are trying to compute rod diameter we could size the rod to be a short or a long column keeping in mind that the Euler formula applies to long columns where the stress is less than $\mathrm{Sy} / 2$ and where the slenderness ratio L / rn is greater than the critical value given by the table above. Lets use Euler and design it as a long column.

$$
\begin{aligned}
& \frac{P c r}{A}=\frac{C \pi E I}{A L^{2}} \quad \text { Assume C }=1 / 4 \text { For "Fixed }- \text { Free" } \\
& P c r=\frac{c \pi^{2} E I}{L^{2}}=\frac{\left(\frac{1}{4}\right)\left(\pi^{2}\right)\left(30 \times 10^{6}\right) I}{20^{2}}=40000 \\
& \therefore I=(40,000)(20)^{2}(4) /\left(\pi^{2} * 30 \times 10^{6}\right)=0.216 \\
& \text { BUT } \quad I=\frac{\pi d^{4}}{64}=.216 \\
& d^{4}=\frac{(.216)(64)}{\pi}=4.40 \\
& d^{2}=2.09 \\
& \mathrm{~d}=1.448 \Rightarrow 1.5 \text { inches }
\end{aligned}
$$

For a force in tension $=4000 \mathrm{lbs}$
(Piston area) $(2000 \mathrm{psi})=4000$
Piston area $=2.0$ in ${ }^{\wedge} 2$ effective area
But we must remember that in contraction the rod is occupying
Part of the cylinder area.
Area of the $\operatorname{rod}=(\mathrm{Pi})\left(\mathrm{d}^{\wedge} 2\right) / 4=3.14^{*}\left(1.5^{\wedge} 2\right) / 4=1.767 \mathrm{in} \wedge 2$
Thus the total bore area must be $2.0+1.767=3.767$ in ${ }^{\wedge} 2$
Hence (pi)*(D^2)/4=3.767
D^2=4.796
$\mathrm{D}=2.19$ in

2.25 in dia piston

Can a piston 2.25 in dia generate 8000 lbs push with a 2000 psi Hydraulic pressure?
Force push $=\mathrm{P}^{*}$ Area $=2000^{*}(\text { pi })^{*}\left(2.25^{\wedge} 2\right) / 4=7952 \mathrm{lbs}$ so OK.

Lets work a follow-on example

Assume you want to check the connector in a slider crank mechanism which is to generate a force at the slider

Lets assume you have chosen the following:
Connector length 12 "
Cross-section $1 / 4 \times 1$ inch, area $=1 / 4$ inch sq. Mat' l Al, $\mathrm{E}=10.6 \times 10^{\wedge} 6 \mathrm{psi}$
Max load in connector will be 500 lbf
Lets assume we need a safety factor $\mathrm{N}=2$
Problem definition: we need Pallowable $>=500 \mathrm{lbf}$ For safety $\mathrm{N}=2$, will the chosen design have adequate buckling strength?

Plan:

Compute the slenderness ratio and decide if the connector column Is "long" or "short" then apply either Euler or JB Johnson to compute Pcr.
If $\mathrm{Pcr} / \mathrm{N}=\mathrm{Pcr} / 2=$ Pallowable $>=500 \mathrm{lbf}$ then the proposed size is OK

Execution:

Buckling will occur about yy if we assume a pinned-pinned joint about both axes at each end.

$$
\begin{aligned}
& \therefore \text { Iyy }=\frac{(1)\left(\frac{1}{4}\right)^{3}}{12}=\frac{1}{(64)(12)}=\frac{1}{768} \mathrm{in}^{4} \\
& A=\frac{1}{4} \mathrm{in}^{2} \\
& r_{n y=\sqrt{\frac{I y y}{A}}=\sqrt{4 / 768}=.0722} \quad \text { Slenderness Ratio } \frac{L}{r_{n y}}=\frac{12}{.0722}=166.2
\end{aligned}
$$

Now evaluate the critical slenderness ratio: where $\mathrm{C}=1$ for pinned-pinned and $\mathrm{Sy}=24000 \mathrm{psi}$ for say Al 2011 T6 alloy

$$
\begin{aligned}
& \sqrt{\frac{2 C \pi^{2} E}{S y}}=\sqrt{\frac{(2)(1)\left(\pi^{2}\right)\left(10.6 \times 10^{6}\right)}{24,000}}=93.3 \\
& \therefore \frac{L}{r_{n y}}=166>93.3 \Rightarrow \text { Long Column} \\
& \text { Use Euler } \\
& \text { Per }=\frac{C \pi^{2} E A}{\left(\frac{L}{r_{n y}}\right)^{2}}=\frac{(1)\left(\pi^{2}\right)\left(10.6 \times 10^{6}\right)\left(\frac{1}{4}\right)}{(166)^{2}}=948 \mathrm{lbf}
\end{aligned}
$$

$\therefore \quad P a l l o w a b l e=\frac{P c r}{N}=\frac{948}{2}=474 l b s$
Which means our safety factor is less than 2 , actually it is

$$
\begin{aligned}
& \frac{948}{N}=500 \\
& N=\frac{948}{500}=1.89
\end{aligned}
$$

We can decide as a designer to go with this or we can increase the thickness to get $\mathrm{N}=2$

If we go back and write the slenderness ratio in terms of the Thickness we should be able to compute the thickness req'd For the $500 \mathrm{lbf}(\mathrm{N}=2)$ allowable load requirement.

$$
\begin{aligned}
& I y y=\frac{(1)(b)^{3}}{12}=\frac{b^{3}}{12} \\
& A=(1)(b)=b \\
& r_{x y}=\sqrt{\frac{b^{3}}{12(b)}}=\sqrt{\frac{b^{2}}{12}}=\frac{b}{3.464}
\end{aligned}
$$

Now the connector will still be "long" so plugging Euler:
We need $\mathrm{Pcr}>=1000 \mathrm{lbf}$ (ie, so that $\mathrm{Pcr} / 2>=500 \mathrm{lbf}$)

$$
\begin{aligned}
& \left.\therefore 1,000=\frac{(1)\left(\pi^{2}\right)\left(10.6 \times 10^{6}\right)(b)}{\sqrt{\frac{b^{2}}{12}}}\right)^{2}=\frac{\left(\pi^{2}\right)\left(10.6 \times 10^{6}\right) b^{3}}{(144)(12)} \\
& \therefore b^{3}=.01653 \\
& b=.255^{\prime \prime}
\end{aligned}
$$

Example Shaft Problem

Problem statement: The drive shaft in the sketch below is made of mild steel tube ($3.5 "$ OD x 0.80 wall) welded to universal joint, yokes and a splined shaft as shown. It is driven by an engine developing 250 hp at 2000 rpm what is the stress in the shaft tube? If the shaft is considered to have uniform properties, end to end, what is the critical speed of the shaft?

Plan: this is a torsion problem with a hollow shaft. The stress in the shaft will be due to shearing stress. We will need to apply the formula for shear stress for a hollow shaft. For the critical speed question we are then dealing with a vibration issue...at what frequency (rpm) will the shaft be inclined to go into a resonant condition...what do we know about this? Spring rate?, static deflection? The Rayleigh-Ritz formula? Etc, ...since the shaft has only distributed mass we could break it into segments and apply the Rayleigh-Ritz but that would be a lot of work for the time constraint...so that is not likely what is expected...the simplest thing we can so do is compute the max static deflection and use that to compute the approximate frequency.
Note: Rayleigh-Ritz says:
The first critical freq (rpm) $=187.7\left[\begin{array}{ccc}J & w_{i} \\ i=1 \\ \frac{\Sigma}{i} & w_{i} & y_{i} \\ J & w_{i} \\ i=1 & w_{i} & y_{i}^{2}\end{array}\right]^{\frac{1}{2}}$

Solution execution:

Stress in the shaft due to torsional shearing stress
$\tau=\frac{T C}{J}$ Where J is the Polar Moment for A Hollow Shaft
$\mathrm{T}=$ Torque
$\mathrm{C}=\frac{D_{\mathrm{o}}}{2} \quad$ Radius to Outermost Fiber
For Hollow Shaft $\quad J=\frac{\pi}{32}\left(D_{o}{ }^{4}-D_{i}{ }^{4}\right)$

$$
\begin{aligned}
& =\frac{\pi}{32} D_{0}{ }^{4}\left(1-\left(\frac{D_{i}}{D_{o}}\right)^{4}\right) \\
& C=\frac{D_{0}}{2}
\end{aligned}
$$

$$
\therefore \tau=\frac{T\left(D_{0} / 2\right)}{\frac{\pi}{32} D_{0}{ }^{4}\left(1-\left(\frac{D_{i}}{D_{o}}\right)^{4}\right)}=\frac{16 T}{\pi D_{o}{ }^{3}\left(1-\left(\frac{D_{i}}{D_{o}}\right)^{4}\right)}
$$

But What is the Torque?

$$
\begin{aligned}
\text { Recall } \mathrm{hp} & =\frac{T N}{63025} \\
\therefore \quad T & =\frac{(250)(63025)}{2000}=7878 \mathrm{lbf}-\mathrm{in}
\end{aligned}
$$

$$
\tau=\frac{(16)(7878)}{\pi(3.5)^{3}\left(1-\left(\frac{1.9}{3.5}\right)^{4}\right)}=\frac{126050}{134(1-.087)}=1030 \mathrm{PSI}
$$

2.) To find the critical speed we can compute max static deflection in the shaft and apply

$$
W_{n}=\sqrt{g / \delta_{s t}} \quad \mathrm{rad} / \mathrm{s}
$$

Where Wn is the undamped natural frequency, and δ st is the static deflection of a spring-mass system
Assume shaft is uniform along its length

$$
\begin{gathered}
\text { Weight } / \text { inch }=(\rho)(\text { AREA })=\left(.28 \mathrm{lb} / \mathrm{in}^{3}\right)\left(\pi / 4\left(3.5^{2}-1.9^{2}\right)\right) \\
=1.9 \frac{\mathrm{lb}}{\mathrm{in}}
\end{gathered}
$$

Hence we have a beam problem

How do we find the max static deflection in a uniformly loaded shaft? Well it would be nice to have a set of beam tables giving formulae for beams loaded in different ways. If we had such a table we could look up a uniformly loaded beam, simply supported, we should find deflection $\mathrm{y}(\mathrm{x})$.
$y=\frac{w x}{24 E I}\left(2 \ell x^{2}-x^{3}-\ell^{5}\right)$
Where w is the load/unit length, or in this case weight/unit length Thus deflection at mid-beam, $x=\ell / 2$ gives,

$$
\begin{aligned}
& y=\frac{w \ell^{4}}{24 E I}\left(-\frac{5}{16}\right) \quad \text { Where } \\
& I=\frac{\pi}{64}\left(D_{o}{ }^{4}-D_{i}{ }^{4}\right)=6.726 \\
& E=30 \times 10^{6} \\
& w=1.9 \mathrm{lb} / \mathrm{in} \\
& \ell=52 \mathrm{in}
\end{aligned}
$$

Which gives
$y=-.000896$ in @ $x=\ell / 2$

$$
\begin{aligned}
& w_{c=\sqrt{g / \delta_{S T}}}=\sqrt{386 / .000896} \\
& =656.4 \frac{\mathrm{rad}}{\mathrm{~S}}=(656.4)\left(\frac{60 \mathrm{~S} / \mathrm{min}}{2 \pi \mathrm{rad} / \mathrm{REV}}\right)
\end{aligned}
$$

$$
w_{c}=6270 \mathrm{RPM}
$$

Some Engineering Basics

The following information helps you solve technical problems frequently encountered in designing and selecting motion control components and systems.

Torque

$$
\begin{equation*}
T=F R \tag{1}
\end{equation*}
$$

Where:
$T=$ Torque, lb-ft
$F=$ Force, lb
$R=$ Radius, or distance that the force is from the pivotal point, ft

Linear to rotary motion

$$
\begin{equation*}
N=\frac{V}{0.262 D} \tag{2}
\end{equation*}
$$

Where:
$N=$ Speed of shaft rotation, rpm
$V=$ Velocity of material, fpm
$D=$ Diameter of pulley or sprocket, in.

Horsepower
Rotating objects:

$$
\begin{equation*}
P=\frac{T N}{5,250} \tag{3}
\end{equation*}
$$

Where:
$P=$ Power, hp
$T=$ Torque, lb-ft
$N=$ Shaft speed, rpm
Objects in linear motion:

$$
\begin{equation*}
P=\frac{F V}{33,000} \tag{4}
\end{equation*}
$$

Where:
$P=$ Power, hp
$F=$ Force, lb
$V=$ Velocity, fpm

Pumps:

$$
\begin{equation*}
P=\frac{Q H S}{3,960 \mu} \tag{5}
\end{equation*}
$$

Where:
$\rho=$ Power, hp
$Q=$ Flow rate, gpm
$H=\mathrm{Head}, \mathrm{ft}$
$S=$ Specific gravity of fluid
$\mu=$ Pump efficiency
Fans and blowers:

$$
\begin{equation*}
P=\frac{Q p}{229 \mu} \tag{6}
\end{equation*}
$$

Where:
$P=$ Power, hp
$Q=$ Flow rate, cfm
$p=$ Pressure, psi
$\mu=$ Efficiency

Accelerating torque and force

Of rotating objects

$$
\begin{equation*}
T=\frac{\left(W K^{2}\right) \Delta N}{308 t} \tag{7}
\end{equation*}
$$

Where:
$T=$ Torque required, $\mathrm{lb}-\mathrm{ft}$
$W K^{2}=$ Total inertia of load to be accelerated, $\mathrm{lb}^{\mathrm{ft}}{ }^{2}$. (See Formulas 9, 10, 11, and 12.)
$\Delta N=$ Change in speed, rpm
$t=$ Time to accelerate load, sec
Objects in linear motion:

$$
\begin{equation*}
F=\frac{W \Delta V}{1,933 t} \tag{8}
\end{equation*}
$$

Where:
$F=$ Force required, 1 b
$W=$ Weight, 1 b
$\Delta V=$ Change in velocity, fpm
$t=$ Time to accelerate load, sec

Moment of inertia
Solid cylinder rotating about its own axis:

$$
\begin{equation*}
W K^{2}=(1 / 2) W R^{2} \tag{9}
\end{equation*}
$$

Where:
$W K^{2}=$ Moment of inertia, $\mathrm{lb}^{\mathrm{ft}}{ }^{2}$
$W=$ Weight of object, lb
$R=$ Radius of cylinder, ft
Hollow cylinder rotating about its own axis:

$$
\begin{equation*}
W K^{2}=\frac{W\left(R_{\mathrm{I}}^{2}+R_{2}^{2}\right)}{2} \tag{10}
\end{equation*}
$$

Where:
$W K^{2}=$ Moment of inertia, $\mathrm{lb}_{\mathrm{-tt}}{ }^{2}$
$W=$ Weight of object, lb
$R_{1}=$ Outside radius, ft
$R_{2}=$ Inside radius, ft

Material in lis a continuous fi rotational spee veyor system:

$$
W K_{L}^{2}=W
$$

Where:
$W K_{L}{ }^{2}=$ Linear
$W=$ Weight of I
$V=$ Linear velo
$N=$ Rotational
Reflected in through a speed - gear, chain, o
$W K_{R}^{2}=$

Where:
$W K_{R}{ }^{2}=$ Reflect $W K_{L}{ }^{2}=$ Load in
$R_{r}=$ Reduction

The RMS (root mean square) value of a load is one of the quantities often used to size PT components.
$L_{R M S}=\sqrt{\frac{L_{1}^{2} t_{1}+L_{2}^{2} t_{2}+\ldots+L_{n}^{2} t_{n}}{t_{1}+t_{2}+\ldots+t_{n}}}$

Where:

$L_{R M S}=$ RMS value of the load which can be in any unit, hp, amp, etc.
$L_{1}=$ Load during time of period 1
$L_{2}=$ Load during time of period 2, etc.
$t_{1}=$ Duration of time for period 1
$t_{2}=$ Duration of time for period 2, etc.

Time
Modulus of elasticity

$$
\begin{equation*}
E=\frac{P L}{A \Delta d} \tag{14}
\end{equation*}
$$

Where:
$E=$ Modulus of elasticity, lb/in. ${ }^{2}$
$P=$ Axial load, lb
$L=$ Length of object, in.
$A=$ Area of object, in. ${ }^{2}$
$\Delta d=$ Increase in length resulting from axial load, in.

General technical references

1. S.I. Heisler, The Wiley Engineer's Desk Reference, John S. Wiley \& Sons, New York, 1984.
2. Hindehide, Zimmerman, Machine Design Fundamentals, John S. Wiley \& Sons, New York, 1983.
3. K.M. Walker, Applied Mechanics for Engineering Technology, Third Edition, Reston Publishing Co. Inc.,

Reston, Va., 1984.
4. ASM Handbook of Engine Mathematics, American Soci Metals, Metals Park, Ohio, 198
5. The Smart Motion Cheat Amechtron Inc., Denton, Texas

Mechanical properties of common materials

Material	Equivalent	Ultimate strength, psi			Yield point, tension (psi)	Modulus of elasticity, tension or compression (psi)	Modulus of elasticity, shear (psi)	Weight (lb per in. ${ }^{3}$)					
		Tension	Compression*	Shear									
Steel, forged-rolled													
 C, $0.10-0.20 \ldots \ldots .$. SAE 1015 60,000 39,000 48,000 39,000 $30,000,000$ $\mathbf{1 2 , 0 0 0 , 0 0 0}$ 0.28													
C, 0.20-0.30	SAE 1025	67,000	43,000	53,000	43,000	30,000,000	12,000,000	0.28					
C, 0.30-0.40	SAE 1035	70,000	46,000	56,000	46,000	30,000,000	12,000,000	0.28					
C, 0.60-0.80		125,000	65,000	75,000	65,000	30,000,000	12,000,000	0.28					
Nickel	SAE 2330	115,000		92,000		30,000,000	12,000,000	0.28					
Gray	ASTM 20	20,000	80,000	27,000		15,000,000	6,000,000	0.26					
Gray	ASTM 35	35,000	125,000	44,000				0.26					
Gray	ASTM 60	60,000	145,000	70,000		20,000,000	8,000,000	0.26					
Malleable	SAE 32510	50,000	120,000	48,000		23,000,000	9,200,000	0.26					
Wrought iron		48,000	25,000	38,000	25,000	27,000,000		0.28					
Low C.....		60,000 70,000					0.28 0.28					
High C....		80,000	45,000		45,000			0.28					
Aluminum alloy:													
Structural, No. 350...		16,000	5,000	11,000	5,000	10,000,000	3,750,000	0.10					
Brass:													
Cast		$40,000$ 54,000						0.30 0.30					
Annealed ...		$\begin{aligned} & 54,000 \\ & 96,700 \end{aligned}$	18,000 49,000	18,000 49,000	15,500,000	6,200,000	0.30 0.30					
Bronze:													
Cast		22,000						0.31					
Cold-drawn		85,000				15,000,000	6,000,000	0.31					
Brick, clay	ASTM		1,500	3,000				0.72					
Concrete 1:2:4 (28 days)			2,000			3,000,000		0.087					
Stone			8,000					0.092 0.015					
Timber		300	4,840	860	550		1,280,000	0.015					

The ultimate strength in compression for ductile materials is usually taken as the yield point. The bearing value for pins and rivets may be much higher, and for structural steel is taken as $90,000 \mathrm{psi}$. Source: S.I. Heisler, The Wiley Engineer's Desk Reference, 1984. Used with permission of John Wiley \& Sons, New York.

CONVERSION FACTORS

Unless otherwise stated, pounds are U.S. avoirdupois, feet are U.S. standard, and seconds are mean solar.

Length

Multiply

Angstrom units
cm
ft
in. (U.S.)
in. (British)
m
m
m
m
m
yd
miles (U.S. statute)
cir mils
cm^{2}
$\mathrm{~cm}^{2}$
ft^{2}
ft^{2}
in^{2}.

Area

By

3.937×10^{-9}	in.
0.3937	in.
0.30480	m
2.5400058	cm
0.9999972	in. (U.S.)
10^{10}	Angstrom units
3.280833	ft
39.37	in.
1.09361	yd
6.2137×10^{-4}	miles (U.S. statute)
0.91440	m
5,280	ft

To obtain

in. (U.S.)
Angstrom units

$$
\mathrm{ft}
$$

in.

$$
\mathrm{yd}
$$

miles (U.S. statute)

$$
\mathrm{m}
$$

$$
\begin{aligned}
& 7.854 \times 10^{-7} \\
& 1.07639 \times 10^{-3} \\
& 0.15499969 \\
& 0.092903 \\
& 929.0341 \\
& 6.4516258
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{in}^{2}{ }^{2} \\
& \mathrm{ft}^{2} \\
& \mathrm{in}^{2} \\
& \mathrm{~m}^{2} \\
& \mathrm{~cm}^{2} \\
& \mathrm{~cm}^{2}
\end{aligned}
$$

Volume

cm^{3}	3.531445×10^{-5}	ft^{3}
$\mathrm{~cm}^{3}$	2.6417×10^{-4}	gal (U.S.)
cm^{3}	0.033814	oz (U.S. fluid)
ft^{3} (British)	0.9999916	ft^{3}
$\mathrm{ft}^{\text {(U }}$ (U.S.)	28.31625	L (liter)
m^{3}	264.17	gal (U.S.)
gal (British)	$4,516.086$	$\mathrm{~cm}^{3}$
gal (British)	1.20094	gal (U.S.)
gal (U.S.)	0.13368	ft^{3} (U.S.)
gal (U.S.)	231	in.
gal (U.S.)	3.78533	L (liter)
gal (U.S.)	128	oz (U.S. fluid)
oz (U.S. fluid)	29.5737	$\mathrm{~cm}^{3}$
oz (U.S. fluid)	1.80469	in. 3
yd^{3}	0.76456	$\mathrm{~m}^{3}$
yd^{3} (British)	0.76455	$\mathrm{~m}^{3}$

Plane angle

radian

Weight

Dynes	2.24809×10^{-6}	lb
kg	35.2740	oz (avoirdupois)
kg	2.20462	lb
kg	0.001	tons (metric)
kg	0.0011023	tons (short)
oz (avoirdupois)	28.349527	grams
tons (long)	1,106	kg
tons (ong)	2,240	lb
tons (metric)	1,000	kg
tons (metric)	$2,204.6$	lb
tons (short)	2,000	lb

Torque

$\mathrm{lb}-\mathrm{in}$.	0.113	(Newton-meters) $\mathrm{N}-\mathrm{m}$
$\mathrm{lb}-\mathrm{ft}$	1.356	$\mathrm{~N}-\mathrm{m}$
$\mathrm{lb}-\mathrm{ft}$	1.3558×10^{7}	dyne-cm
$\mathrm{oz}-\mathrm{in}$.	0.00706	$\mathrm{~N}-\mathrm{m}$

Energy

lb-in.
lb-in.
0.113

Btu
0.113

Btu
251.98

W-sec
j (joule)
1,055.06
calories
j

Power

gram-cm/sec	9.80665×10^{-5}	W
hp	$2,545.08$	$\mathrm{Btu}($ mean $) / \mathrm{hr}$
hp	550	$\mathrm{lb}-\mathrm{ft} / \mathrm{sec}$
hp	0.74570	kW
hp	5,250	$\mathrm{lb-ft} / \mathrm{rpm}$

Inertia

Mass inertia:

lb-in. ${ }^{2}$
$\mathrm{kg}-\mathrm{cm}^{2}$
Weight inertia:
lb-in.-sec ${ }^{2}$
in-oz-sec ${ }^{2}$
$\mathrm{lb}-\mathrm{ft}-\mathrm{sec}^{2}$

2.93×10^{-4}	$\mathrm{~kg}-\mathrm{m}^{2}$
1.83×10^{-5}	$\mathrm{~kg}-\mathrm{m}^{2}$
10^{-4}	$\mathrm{~kg}-\mathrm{m}^{2}$
1.13×10^{-4}	$\mathrm{~kg}-\mathrm{m}^{2}$
7.06×10^{-3}	$\mathrm{~kg}-\mathrm{m}^{2}$
1.355	$\mathrm{~kg}-\mathrm{m}^{2}$

Source: S.I. Heisler, The Whey Engineer's Desk Reference, 1984. Used with permission of John Wiley \& Sons, New York
The Smart Motion Cheat Sheet, Brad Grant, Amechtron Inc., Denton, Texas.

Multiply

Velocities

feet/sec (fps)	0.68182	mph
meters per sec	2.23693	mph
rpm	0.10472	$\mathrm{radians} / \mathrm{sec}$
mph	44.7041	$\mathrm{~cm} / \mathrm{sec}$
mph	1.4667	fps

Temperature

Pressure

atmosphere	14.696	psi
atmosphere	10,333	$\mathrm{~kg} / \mathrm{m}^{2}$
$\mathrm{lb} / \mathrm{ft}^{2}$	4.88241	$\mathrm{~kg} / \mathrm{m}^{2}$
psi	70.307	$\mathrm{grams} / \mathrm{cm}^{2}$
psi	703.07	$\mathrm{~kg} / \mathrm{m}^{2}$

Force
Newton
0.22481

Newton
9.80

```
\(\operatorname{deg} \mathrm{C}=0.555(\operatorname{deg} \mathrm{~F}-32)\)
\(\operatorname{deg} \mathrm{F}=1.8(\operatorname{deg} \mathrm{~F})+32\)
\(\operatorname{deg} \mathrm{F}=1.8(\operatorname{deg} \mathrm{~F})+32\)
```


UNITS / DIM. CHECKS

$\mathrm{F}=\mathrm{ma} \quad$ Rectilinear Motion

$\therefore 1 \mathrm{~N}=(1 \mathrm{kgm})\left(1 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)$
$1 \mathrm{lbf}=(1 \mathrm{lbm})\left(386 \mathrm{in} / \mathrm{s}^{\wedge} 2\right)$ or $1 \mathrm{lbf}=1 \mathrm{lbm} *\left(32.17 \mathrm{ft} / \mathrm{s}^{\wedge} 2\right)$
$\therefore 1 \mathrm{lbm}=1 / 386\left(\mathrm{lbf}^{*} \mathrm{~s}^{\wedge} 2 / \mathrm{in}\right)$
$1 \mathrm{kgf}=(1 \mathrm{kgm})\left(9.806 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)$
$\therefore 1 \mathrm{kgm}=(1 / 9.806) \mathrm{kgf}^{*} \mathrm{~s}^{\wedge} 2 / \mathrm{m}$
$\therefore 1 \mathrm{~N}=(1 / 9.806) \mathrm{kgf}\left(\mathrm{s}^{\wedge} 2 / \mathrm{m}\right)\left(1 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)=(1 / 9.806) \mathrm{kgf}$ but $1 \mathrm{kgf}=2.2 \mathrm{lbf}$
$\therefore 1 \mathrm{~N}=2.2 / 9.806 \mathrm{lbf}=0.2243 \mathrm{lbf}$
or $1 \mathrm{lbf}=4.457 \mathrm{~N}$

