Lathe Practice

Introduction

Lathe is a machine, which removes the metal from a piece of work to the required shape &size

Types of Lathe

Engine Lathe

The most common form of lathe, motor driven and comes in large variety of sizes and shapes.

Bench Lathe

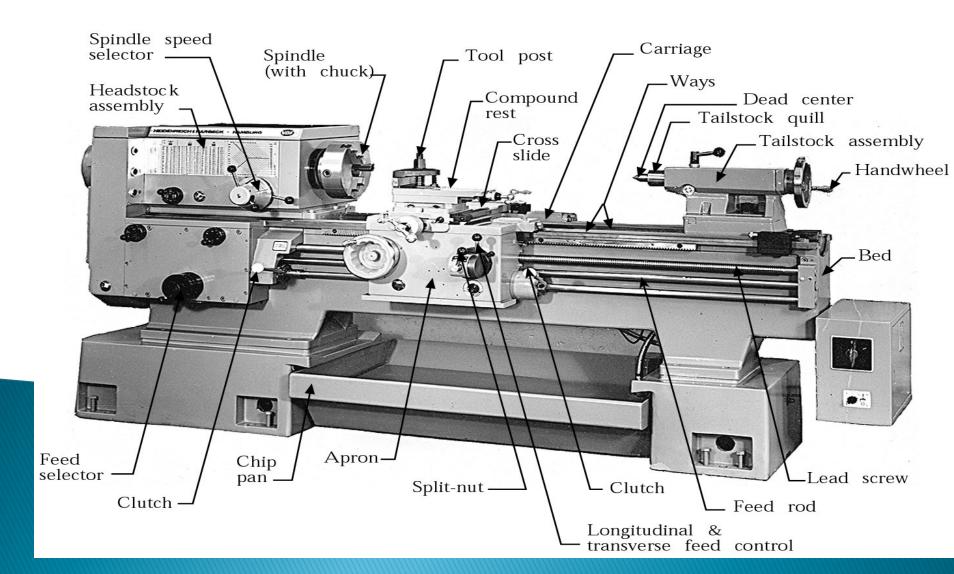
A bench top model usually of low power used to make precision machine small work pieces.

Tracer Lathe

a lathe that has the ability to follow a template to copy a shape or contour.

Automatic Lathe

A lathe in which the work piece is automatically fed and removed without use of an operator. Cutting operations are automatically controlled by a sequencer of some form


Turret Lathe

lathe which have multiple tools mounted on turret either attached to the tailstock or the cross-slide, which allows for quick changes in tooling and cutting operations.

Computer Controlled Lathe

A highly automated lathe, where both cutting, loading, tool changing, and part unloading are automatically controlled by computer coding.

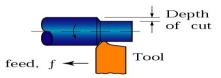
Component Description

Lathe Operations

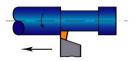
Turning:produce straight, conical, curved, or grooved workpieces

Facing: to produce a flat surface at the end of the part or for making face grooves.

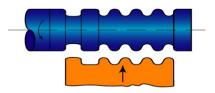
Boring: to enlarge a hole or cylindrical cavity made by a previous process or to produce circular internal grooves.

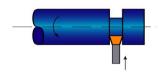

Drilling: to produce a hole by fixing a drill in the tailstock

Threading: to produce external or internal threads

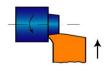

Knurling: to produce a regularly shaped roughness on cylindrical surfaces

Lathe Operations

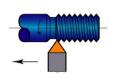

(a) Straight turning


(d) Turning and external grooving

(g) Cutting with a form tool


(j) Cutting off

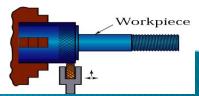
(b) Taper turning


(e) Facing

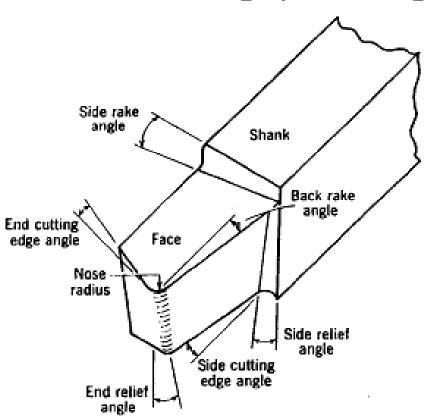
(h) Boring and internal grooving

(k) Threading

(c) Profiling


(f) Face grooving

(i) Drilling



(l) Knurling

Cutting Tools

Single point cutting tool

Work Holding Devices

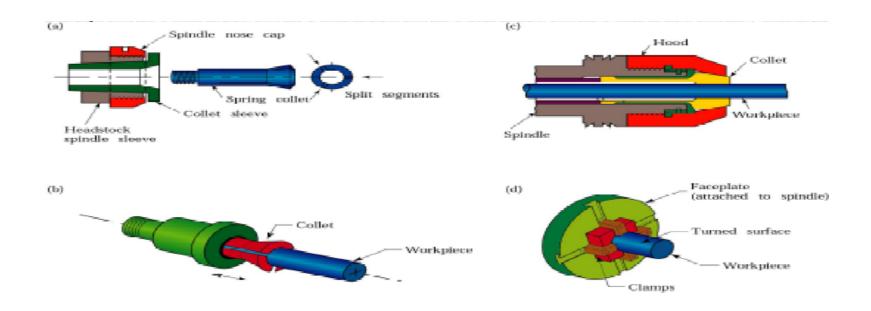


Fig : (a) and (b) Schematic illustrations of a draw-in-type collets. The workpiece is placed in the collet hole, and the conical surfaces of the collet are forced inward by pulling it with a draw bar into the sleeve. (c) A push-out type collet. (d) Workholding of a part on a face plate.

Three jaw chuck

- For holding cylindrical stock centered.
- For facing/center drilling the end of your aluminum stock

Four-Jaw Chuck

- This is independent chuck generally has four jaws, which are adjusted individually on the chuck face by means of adjusting screws

Collet Chuck

Collet chuck is used to hold small workpieces

Magnetic Chuck

Thin jobs can be held by means of magnetic chucks.

Cutting speed (V) = $\Pi DN/1000 M/min$

Depth of cut (D) = $(D_1-D_2)/2$ mm

Where D_1 =original diameter and D_2 = final diameter of the work piece

Metal Removal Rate (MRR) = $\Pi \times D \times d \times f$ mm3

In terms of cutting speed (V in mm/min), MRR=1000 x V x d x f

Where D represents original diameter of the work piece in mm Where N represents revolution per minute (rpm)

Where d represents depth of cut in mm

Where f represents feed in mm/rev

Taper Turning
Tan $\alpha = (D_1 - D_2)/2L$ where $\alpha =$ angle of taper

 D_1 = major diameter in mm D_2 = minor diameter in mm L= Length of taper in mm The taper is defined as $K = (D_1 - D_2)/L$

References

Book

- work shop Technolgy by Hajra choudry
- Advances in Manufacturing Technology C.J Thomas

Website

- www. engbasics.com
- www. efunda.com