
5.1 Introduction
5.2 The Computer Organization - Intel PC
5.3 Instruction Format
5.4 Addressing Mode
5.5 DEBUG program

Computer System and programming in C

Introduction
Levels of Programming Languages
1) Machine Language
 Consists of individual instructions that will be executed by the CPU

one at a time
2) Assembly Language (Low Level Language)
 Designed for a specific family of processors (different processor

groups/family has different Assembly Language)
 Consists of symbolic instructions directly related to machine language

instructions one-for-one and are assembled into machine language.
3) High Level Languages

 e.g. : C, C++ and Vbasic
 Designed to eliminate the technicalities of a particular computer.
 Statements compiled in a high level language typically generate many

low-level instructions.

Computer System and programming in C

Advantages of Assembly Language
1. Shows how program interfaces with the processor,

operating system, and BIOS.
2. Shows how data is represented and stored in memory

and on external devices.
3. Clarifies how processor accesses and executes

instructions and how instructions access and process
data.

4. Clarifies how a program accesses external devices.

Computer System and programming in C

Reasons for using Assembly Language
1. A program written in Assembly Language requires

considerably less memory and execution time than one
written in a high –level language.

2. Assembly Language gives a programmer the ability to
perform highly technical tasks that would be difficult, if
not impossible in a high-level language.

3. Although most software specialists develop new
applications in high-level languages, which are easier to
write and maintain, a common practice is to recode in
assembly language those sections that are time-critical.

4. Resident programs (that reside in memory while other
program execute) and interrupt service routines (that
handle input and output) are almost always develop in
Assembly Language.

Computer System and programming in C

The Computer Organization - INTEL PC
In this course, only INTEL assembly language will be learnt.

Below is a brief description of the development of a few
INTEL model.

(i) 8088
 Has 16-bit registers and 8-bit data bus
 Able to address up to 1 MB of internal memory
 Although registers can store up to 16-bits at a time but the

data bus is only able to transfer 8 bit data at one time

(ii) 8086
 Is similar to 8088 but has a 16-bit data bus and runs

faster.

Computer System and programming in C

(iii) 80286
 Runs faster than 8086 and 8088
 Can address up to 16 MB of internal memory
 multitasking => more than 1 task can be ran

simultaneously
(iv) 80386

 has 32-bit registers and 32-bit data bus
 can address up to 4 billion bytes. of memory
 support “virtual mode”, whereby it can swap portions of memory

onto disk: in this way, programs running concurrently have
space to operate.

(v) 80486
 has 32-bit registers and 32-bit data bus
 the presence of CACHE

Computer System and programming in C

(vi) Pentium
 has 32-bit registers, 64-bit data bus
 has separate caches for data and instruction
 the processor can decode and execute more than one
 instruction in one clock cycle (pipeline)

(vii) Pentium II & III
 has different paths to the cache and main memory

Computer System and programming in C

In performing its task, the processor (CPU) is partitioned into two
logical units:

1) An Execution Unit (EU)
2) A Bus Interface Unit (BIU)

EU
 EU is responsible for program execution
 Contains of an Arithmetic Logic Unit (ALU), a Control Unit (CU) and a

number of registers

BIU
 Delivers data and instructions to the EU.
 manage the bus control unit, segment registers and instruction queue.
 The BIU controls the buses that transfer the data to the EU, to memory

and to external input/output devices, whereas the segment registers control
memory addressing.

Computer System and programming in C

EU and BIU work in parallel, with the BIU keeping
one step ahead. The EU will notify the BIU when it
needs to data in memory or an I/O device or obtain
instruction from the BIU instruction queue.

When EU executes an instruction, BIU will fetch the
next instruction from the memory and insert it into
to instruction queue.

Computer System and programming in C

AH AL
BH BL
CH CL
DH DL

SP
BP
SI
DI

AX

CX
DX

BX

EU : Execution Unit BIU : Bus Interface Unit

CS

Program Control

DS
SS
ES

ALU
CU

Flag register

1
2
3

Bus
Control
Unit

4

n

Bus

Instruction Pointer

Instruction
Queue

(Program Counter)

Computer System and programming in C

Addressing Data in Memory

 Intel Personal Computer (PC) addresses its
memory according to bytes. (Every byte has a
unique address beginning with 0)

 Depending to the model of a PC, CPU can access
1 or more bytes at a time

 Processor (CPU) keeps data in memory in reverse
byte sequence (reverse-byte sequence: low order byte in the
low memory address and high-order byte in the high memory
address)

Computer System and programming in C

Example : consider value 052916 (0529H)

register

memory

 When the processor takes data (a word or 2 bytes), it
will re-reverse the byte to its actual order 052916

05 29

29 05

Address 04A2616
(low-order/least significant byte)

Address 04A2716
(high-order/most significant byte)

2 bytes 05 and 29

Computer System and programming in C

Segment And Addressing
 Segments are special areas in the memory that is defined in a

program, containing the code, data, and stack.
 The segment position in the memory is not fixed and can be

determined by the programmer
 3 main segments for the programming process:

(i) Code Segment (CS)
 Contains the machine instructions that are to execute.
 Typically, the first executable instruction is at the start of this

segment, and the operating system links to that location to
begin program execution.

 CS register will hold the beginning address of this segment

Computer System and programming in C

(ii) Data Segment (DS)
 Contains program’s defined data, constants and works

areas.
 DS register is used to store the starting address of the DS

(iii) Stack Segmen (SS)
 Contains any data or address that the program needs to

save temporarily or for used by your own
“called”subroutines.

 SS register is used to hold the starting address of this
segment

Computer System and programming in C

Address

Address

Address

Stack segment

Data segment

Code segment

Contains the beginning
address of each segment

Segment register
(in CPU)

memory
(MM)

SS Register

DS Register

CS Register

Computer System and programming in C

Segment Offsets

 Within a program, all memory locations within a
segment are relative to the segment’s starting address.

 The distance in bytes from the segment address to
another location within the segment is expressed as an
offset (or displacement).

 Thus the first byte of the code segment is at offset 00,
the second byte is at offset 01 and so forth.

 To reference any memory location in a segment (the
actual address), the processor combines the segment
address in a segment register with the offset value of
that location. actual address = segment address + offset

Computer System and programming in C

Eg:
A starting address of data segment is 038E0H, so the value
in DS register is 038E0H. An instruction references a
location with an offset of 0032H bytes from the start of the
data segment.

 the actual address = DS segment address + offset
= 038E0H + 0032H
= 03912H

Computer System and programming in C

Registers
 Registers are used to control instructions being

executed, to handle addressing of memory, and to
provide arithmetic capability

 Registers of Intel Processors can be categorized into:
1. Segment register
2. Pointer register
3. General purpose register
4. Index register
5. Flag register

Computer System and programming in C

i) Segment register

There are 6 segment registers :

(a) CS register
 Contains the starting address of program’s code segment.
 The content of the CS register is added with the content in

the Instruction Pointer (IP) register to obtain the address
of the instruction that is to be fetched for execution.

(Note: common name for IP is PC (Program Counter))

(b) DS register
 Contains the starting address of a program’s data segment.
 The address in DS register will be added with the value in

the address field (in instruction format) to obtain the real
address of the data in data segment.

Computer System and programming in C

(c) SS Register
 Contains the starting address of the stack segment.
 The content in this register will be added with the

content in the Stack Pointer (SP) register to obtain the
required word.

(d) ES (Extra Segment) Register
 Used by some string (character data) operations to

handle memory addressing
 ES register is associated with the Data Index (DI)

register.

(e) FS and GS Registers
 Additional extra segment registers introduced in

80386 for handling storage requirement.

Computer System and programming in C

(ii) Pointer Registers

 There are 3 pointer registers in an Intel PC :

(a) Instruction Pointer register
 The 16-bit IP register contains the offset address

or displacement for the next instruction that will
be executed by the CPU

 The value in the IP register will be added into the
value in the CS register to obtain the real address
of an instruction

Computer System and programming in C

Example :
The content in CS register = 39B40H
The content in IP register = 514H

next instruction address: 39B40H
+ 514H

. 3A054H
 Intel 80386 introduced 32-bit IP, known as EIP

(Extended IP)

Computer System and programming in C

(b) Stack Pointer Register (Stack Pointer (SP))
• The 16-bit SP register stores the displacement value that

will be combined with the value in the SS register to
obtain the required word in the stack

• Intel 80386 introduced 32-bit SP, known as ESP (Extended
SP)

Example:
Value in register SS = 4BB30H
Value in register SP = + 412H

4BF42H

(c) Base Pointer Register
• The 16-bit BP register facilitates referencing parameters, which

are data and addresses that a program passes via a stack
• The processor combines the address in SS with the offset in BP

Computer System and programming in C

(iii) General Purpose Registers
There are 4 general-purpose registers, AX, BX, CX, DX:

(a) AX register
• Acts as the accumulator and is used in operations that involve

input/output and arithmetic
• The diagram below shows the AX register with the number of bits.

8 bit 8 bit

32 bits

AH AL

AX

EAX

EAX : 32 bit
AX : 16 bit (rightmost 16-bit portion of EAX)
AH : 8 bit => leftmost 8 bits of AX (high portion)
AL : 8 bit => rightmost 8 bit of AX (low portion)

Computer System and programming in C

(b) BX Register
o Known as the base register since it is the only this general

purpose register that can be used as an index to extend addressing.
o This register also can be used for computations
o BX can also be combined with DI and SI register as a base

registers for special addressing like AX, BX is also consists of EBX,
BH and BL

8 bit 8 bit

32 bits

BX

EBX

BH BL

Computer System and programming in C

(c) CX Register
• known as count register
• may contain a value to control the number of times a loops is

repeated or a value to shift bits left or right
• CX can also be used for many computations
• Number of bits and fractions of the register is like below :

8 bit 8 bit

32 bits

CX

CH CL

ECX

Computer System and programming in C

(d) DX Register
• Known as data register
• Some I/O operations require its use
• Multiply and divide operations that involve large values assume

the use of DX and AX together as a pair to hold the data or
result of operation.

• Number of bits and the fractions of the register is as below :

8 bit 8 bit

32 bits

DX

DH DL

EDX

Computer System and programming in C

(iv) Index Register
There are 2 index registers, SI and DI

(a) SI Register
o Needed in operations that involve string (character) and is
always usually associated with the DS register
o SI : 16 bit
o ESI : 32 bit (80286 and above)

(b) DI Register
o Also used in operations that involve string (character) and it
is associated with the ES register
o DI : 16 bit
o EDI : 32 bit (80386 and above)

Computer System and programming in C

(v) FLAG Register
o Flags register contains bits that show the status of some
activities
o Instructions that involve comparison and arithmetic will
change the flag status where some instruction will refer to
the value of a specific bit in the flag for next subsequent
action

- 9 of its 16 bits indicate the current status of the computer
and the results of processing

- the above diagram shows the stated 9 bits

O D I T S Z A P C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Computer System and programming in C

O D I T S Z A P C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OF (overflow): indicate overflow of a high-order (leftmost) bit following arithmetic
DF (direction): Determines left or right direction for moving or comparing string
(character) data
IF (interrupt): indicates that all external interrupts such as keyboard entry are to be
processed or ignored
TF (trap): permits operation of the processor in single-step mode. Usually used in
“debugging” process
SF (sign): contains the resulting sign of an arithmetic operation (0 = +ve, 1 = -ve)
ZF (zero): indicates the result of an arithmetic or comparison operation (0 = non
zero; 1 = zero result)
AF (auxillary carry): contains a carry out of bit 3 into bit 4 in an arithmetic
operation, for specialized arithmetic
PF (parity): indicates the number of 1-bits that result from an operation. An even
number of bits causes so-called even parity and an odd number causes odd parity
CF (parity): contains carries from a high-order (leftmost) bit following an arithmetic
operation; also, contains the content of the last bit of a shift or rotate operation.

Computer System and programming in C

Instruction Format

opcode

 The operation of CPU is determined by the instructions it
executes (machine or computer instructions)

 CPU’s instruction set – the collection of different instructions
that CPU can execute

 Each instruction must contain the information required by CPU
for execution :-

1. Operation code (opcode) -- specifies the operation to be performed (eg:
ADD, I/O)do this

2. Source operand reference -- the operation may involve one or more
source operands (input for the operation) to this

3. Result operand reference -- the operation may produce a result put the
answer here

4. Next instruction reference -- to tell the CPU where to fetch the next
instruction after the execution of this instruction is complete do this
when you have done that

1
2 3 4

Computer System and programming in C

opcode address

 Operands (source & result) can be in one of the 3 areas:-
 Main or Virtual Memory
 CPU register
 I/O device

 It is not efficient to put all the information required by CPU in a machine
instruction

 Each instruction is represented by sequence of bits & is divided into 2 fields;
opcode & address

 Processing become faster if all information required by CPU in one
instruction or one instruction format

 Problems instruction become long (takes a few words in main memory to
store 1 instruction)

 Solution provide a few instruction formats (format instruction); 1, 2, 3 and
addressing mode.

 Instruction format with 2 address is always used; INTEL processors

opcode address for Operand 1 address for Operand 2 address for Result address for Next instruction

Computer System and programming in C

