
Topics
 Automatic variables
 External variables
 Static variables
 Register variables
 Scopes and longevity of above types of variables.

1

1. Scope: the scope of a variable determines over what part(s)
of the program a variable is actually available for
use(active).

2. Longevity: it refers to the period during which a variables
retains a given value during execution of a program(alive)

3. Local(internal) variables: are those which are declared
within a particular function.

4. Global(external) variables: are those which are declared
outside any function.

2

 Are declare inside a function in which they are to be utilized.
 Are declared using a keyword auto.

eg. auto int number;
 Are created when the function is called and destroyed

automatically when the function is exited.

 This variable are therefore private(local) to the function in
which they are declared.

 Variables declared inside a function without storage class
specification is, by default, an automatic variable.

3

int main()
{ int m=1000;
function2();
printf(“%d\n”,m);

}
function1()
{
int m = 10;
printf(“%d\n”,m);

}
function2()
{ int m = 100;

function1();
printf(“%d\n”,m);

}

4

Output
10
100
1000

 Any variable local to main will normally live throughout the
whole program, although it is active only in main.

 During recursion, the nested variables are unique auto
variables.

 Automatic variables can also be defined within blocks. In
that case they are meaningful only inside the blocks where
they are declared.

 If automatic variables are not initialized they will contain
garbage.

5

 These variables are declared outside any function.

 These variables are active and alive throughout the entire program.

 Also known as global variables and default value is zero.

 Unlike local variables they are accessed by any function in the program.

 In case local variable and global variable have the same name, the local
variable will have precedence over the global one.

 Sometimes the keyword extern used to declare these variable.

 It is visible only from the point of declaration to the end of the program.

6

int number;
float length=7.5;
main()
{ . . .

. . .
}
funtion1()
{. . .
. . .

}
funtion1()
{. . .
. . .

}

7

int count;
main()
{count=10;

. . .

. . .
}
funtion()
{int count=0;
. . .
. . .
count=count+1;

}

The variable number and length
are available for use in all three
function

When the function references the
variable count, it will be referencing
only its local variable, not the global
one.

int x;
int main()
{
x=10;
printf(“x=%d\n”,x);
printf(“x=%d\n”,fun1());
printf(“x=%d\n”,fun2());
printf(“x=%d\n”,fun3());

}
int fun1()
{ x=x+10;

return(x);
}
int fun2()
{ int x

x=1;
return(x);

}

8

int fun3()
{

x=x+10;
return(x);

}

Once a variable has been declared
global any function can use it and
change its value. The subsequent
functions can then reference only that
new value.

Output

x=10

x=20

x=1

x=30

int main()
{

y=5;
. . .
. . .

}
int y;

func1()
{
y=y+1
}

9

• As far as main is concerned, y is not
defined. So compiler will issue an error
message.

• There are two way out at this point
1. Define y before main.
2. Declare y with the storage class extern

in main before using it.

int main()
{
extern int y;
. . .
. . .

}
func1()
{
extern int y;
. . .
. . .
}
int y;

10

Note that extern declaration
does not allocate storage
space for variables

int main()
{

extern int m;
int i
. . .
. . .

}
function1()
{

int j;
. . .
. . .

}

11

file1.c

int m;
function2()
{

int i
. . .
. . .

}
function3()
{

int count;
. . .
. . .

}

file2.c

int m;
int main()
{

int i;
. . .
. . .

}
function1()
{

int j;
. . .
. . .

}

12

file1.c

extern int m;
function2()
{

int i
. . .
. . .

}
function3()
{

int count;
. . .
. . .

}

file2.c

 The value of static variables persists until the end of the
program.

 It is declared using the keyword static like
static int x;
static float y;

 It may be of external or internal type depending on the place
of there declaration.

 Static variables are initialized only once, when the program
is compiled.

13

 Are those which are declared inside a function.

 Scope of Internal static variables extend upto the end of the
program in which they are defined.

 Internal static variables are almost same as auto variable
except they remain in existence (alive) throughout the
remainder of the program.

 Internal static variables can be used to retain values between
function calls.

14

 Internal static variable can be used to count the number of calls made to
function. eg.

int main()
{

int I;
for(i =1; i<=3; i++)

stat();
}

void stat()
{

static int x=0;
x = x+1;
printf(“x = %d\n”,x);

}

15

Output

x=1

x=2

x=3

 An external static variable is declared outside of all functions
and is available to all the functions in the program.

 An external static variable seems similar simple external
variable but their difference is that static external variable is
available only within the file where it is defined while simple
external variable can be accessed by other files.

16

 Static declaration can also be used to control the scope of a
function.

 If you want a particular function to be accessible only to the
functions in the file in which it is defined and not to any
function in other files, declare the function to be static. eg.

static int power(int x inty)
{
. . .
. . .

}

17

 These variables are stored in one of the machine’s register and are
declared using register keyword.

eg. register int count;
 Since register access are much faster than a memory access

keeping frequently accessed variables in the register lead to faster
execution of program.

 Since only few variable can be placed in the register, it is important
to carefully select the variables for this purpose. However, C will
automatically convert register variables into nonregister variables
once the limit is reached.

 Don’t try to declare a global variable as register. Because the
register will be occupied during the lifetime of the program.

18

