
Expressions and Assignment
 Precedence, associativity, evaluation order, side effects
 Overloading
 Type conversions
 Relational and Boolean expressions
 Assignment statements

Computer System and programming in C

Expressions and Assignment
Statements
 Common in all imperative languages

 often included in functional languages (SET!) and declarative
languages (is)

 <target location> <assign operator> <source expression>
 “l value” and “r value”

 Language design issues
 operators and precedence
 associativity
 order of evaluation
 evaluating mixed mode expressions
 short-circuit evaluation of Boolean expressions

Computer System and programming in C

Operators and Precedence
 First issue is operators to provide (and symbols)

 +, -, *, / pretty much universal
 div, mod, ** fairly common

 Pascal has no **

 <, >, =, /=, etc., and, or, not pretty much universal
 special operators appropriate for language purpose

 APL array manipulation (transpose, invert, etc.)
 SNOBOL pattern matching operations
 ++, +=, etc. in C

Computer System and programming in C

Operators and Precedence
(continued)
 Then determine precedence among operators

 determines which operations are done first
 typical is

 exponentiation
 multiplicative
 additive
 relational
 logical

 APL has all operators at same level
 Parentheses can always be used to override operator

precedence

Computer System and programming in C

Associativity
 Determines order in which consecutive operators of equal

precedence are evaluated
 left to right (left associativity)

 A + B + C means (A + B) + C
 right to left (right associativity)

 A + B + C means A + (B + C)

 Most operators in most languages are left associative
 Fortran **; C ++, --, unary +- are right associative
 ALL operators in APL are right associative
 Ada ** is non-associative

 programmer must explicitly use parentheses to determine order of
operations

Computer System and programming in C

Side Effects and Evaluation Order
 Operand evaluation order

 variables
 just fetch the value

 constants
 sometimes a fetch from memory
 sometimes the constant is in the machine language instruction

 parenthesized expressions
 evaluate all operands and operators first

 function references
 the case of most interest!
 order of evaluation is crucial

Computer System and programming in C

Side Effects and Evaluation Order
(cont.)
 A side effect is when a function or operator does more than just return a

value
 change a parameter or global variable

 usually considered a bad programming practice
 Ada disallows changes to function parameters

 If side effects are possible, then the order in which an operator’s operands
are evaluated can have an impact on the result
 in C

 x = 3; z = x * ++x; /* 12 or 16?*/
 x = 3; a[x] = x++; /* assign 3 to a[3] or a[4]? */

 evaluation order by itself can have impact
 for expression A + B + C order of additions shouldn’t matter
 but if A and C have very large positive values, and B has very large negative

value, but order is A + C + B, error

a = 10;
b = a + fun(&a);

Computer System and programming in C

Side Effects and Evaluation Order
(cont.)
 One solution: write the language definition to disallow

functional side effects
 no two-way parameters in functions

 Ada
 no nonlocal references in functions

 FORTRAN
 advantage

 it works!
 disadvantage

 programmers want the flexibility of two-way parameters and
nonlocal references

 Another solution: write the language definition to demand that
operand evaluation order be fixed
 disadvantage

 limits some compiler optimizations

Computer System and programming in C

Operator Overloading
 Overloading means using the same name to represent two or

more different things
 + means both integer and real addition in most languages
 also applies to more than operators (functions, procedures)

 Most modern languages (Ada, C++, Fortran 90) allow user-
defined operator overloading
 Ada

 function “+” (left, right: MYTYPE) returns MYTYPE is
 then can use + as an infix operator for things of appropriate type

 type MYTYPE is ...;
 A, B, C: MYTYPE;
 C := A + B;

 compiler determines which + to use based on types of operands

Computer System and programming in C

Problems With Operator
Overloading
 Loss of compiler error detection

 omission of an operand should be a detectable error
 * in C and C++

 avoid by introduction of new symbols
 Pascal’s div

 C++ and Ada allow user-defined overloaded operators
 users can define nonsense operations
 readability may suffer

Computer System and programming in C

Type Conversions
 Often want to write expressions that are mixed mode (contain

operands of more than one type)
 real + integer

 This implies a need to convert one type to another so the
expression can be evaluated
 coercion is implicit conversion, done automatically by the compiler

 implies semantics that define rules for determining type to convert to
from operands

 problem is loss of error detection
 casts are explicit conversions specified by the programmer

 can lead to very clumsy expressions if doing a lot of mixed mode
expressions

 Ada: float (Index);
 C: (int) speed;

Computer System and programming in C

Type Conversions (continued)
 Whether implicit or explicit, conversions can be

 widening
 convert to a type with a greater representation range

 although perhaps with a loss of precision
 integer to real

 narrowing
 convert to a type with a more restricted range
 double precision to real

 promoting
 convert to a type with additional semantic information
 integer to character (Pascal chr function)

 demoting
 strip away semantic information
 character to integer (Ada val attribute)

Computer System and programming in C

Type Conversions (continued)
 Most languages provide some coercions and allow casts
 PL/I allows coercion between almost any types

 DCL A, B, C INT;
 if (A <= B <= C) then ...

 A <= B yields a Boolean value, which is a single bit 0 or 1
 convert bit string to integer to compare to C
 bit <= C is true for any positive values of C

 Ada allows no coercion
 all conversions must be casts
 conversions are allowed between all numeric types
 other conversions only allowed between derived types that share an

ancestor
 type foo is new Boolean; type bar is new Boolean;
 A: foo; B: bar;
 A := foo(b);

Computer System and programming in C

Relational and Boolean
Expressions
 Relational expression consists of 2 operands (which may

themselves be expressions) and a relational operator
 <, <=, >, >=, /=, in
 result is a Boolean value, which is usually implemented as a 0 or

non-zero integer value
 Boolean expression consists of Boolean variables, relational

expressions, and Boolean operators
 and, or, not, xor
 result is a Boolean value

 Design issue for languages is whether to implement lazy or strict
evaluation of Boolean expressions
 strict evaluation evaluates both operands, then gets result
 lazy (or short-circuit) evaluation stops evaluating as soon as truth or

falsehood of expression can be determined

Computer System and programming in C

Relational and Boolean
Expressions (continued)
 Suppose A is a 100-element array, then

 while (scan < 101) and (A[scan] <> key)
 works with short-circuit evaluation
 runtime error with strict evaluation

 Most languages perform strict evaluation
 C, C++ and Java perform short-circuit evaluation
 Ada provides operators to allow programmer to control which

occurs
 and, or are strict evaluation
 and then, or else are lazy evaluation

 C oddity
 A < B < C is legal
 so is A == B == C

Computer System and programming in C

Assignment
 Fairly standard in all imperative languages

 major design choice is whether assignment functions as a
statement or a function

 operator used to indicate assignment varies
 disambiguate assign and equality
 PL/I A = B = C assigns to A the result of B = C as comparison
 what is A = B = C in C

 As a statement, usually require a reference (location) and a
value
 usually single target for assignment
 PL/I allows multiple A, B = 200;

 As a function, returns a value
 APL, C, C++

Computer System and programming in C

Assignment (continued)
 C and C++ provide a rich diversity of assignment operators

and choices
 Conditional targets in C++ and Java

 (X > Y) ? A : B = 24.3;
 A gets value if X > Y, else B does

 Conditional sources
 AVG = (COUNT == 0) ? 0 : SUM / COUNT;
 if COUNT is 0, AVG gets 0, else AVG gets SUM / COUNT

 Compound assignment operators
 total += value; /* total = total + value */
 also in Algol 68

Computer System and programming in C

Assignment (continued)
 Unary assignment operators

 count++; /* count = count + 1 */
 sum = ++count; /* count = count + 1; sum = count */
 right associative

 - count ++ /* - (count ++) */

 Assignment as operator
 while ((ch = getchar()) != EOF) {
 read input, assign to ch; while compares to EOF
 this is another example of an expression side effect
 means less error checking at compile time

 suppose meant while ((ch == getchar())

Computer System and programming in C

Mixed-mode Assignment
 FORTRAN, C, C++

 Any numeric value can be assigned to any numeric
scalar variable, all necessary coercions are done

 Pascal
 Integers assigned to reals, not other way

 Java
 Only widening conversions allowed

 Ada
 No coercion

Computer System and programming in C

