
Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Overview

 Focus is on the structure of a C++ program with

– Multiple implementation files

– Variables that must be shared among the files

 How to

– Compile separate files
– Link them to create an executable

Computer System and programming in C - 1 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage

 Separate Compilation

 In today’s large software systems many people are involved in developing

 same program

 Each individual works on only a piece of the program

 A program comprised of all the implementation files.

 The linker combines or links compiled files into the executable program

 The entire process is called a build

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 2 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage

 Separate Compilation

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 3 -

Implementation File
*.cpp

Implementation File
*.cpp

Implementation File
*.cpp

Preprocessor

Preprocessor

Preprocessor

Compiler

Compiler

Compiler

Standard LibrariesStandard Libraries

Custom Libraries

Linker

cpp

cpp

cpp cpp

cpp

cpp
obj

obj

obj

obj

obj

exe

translation unit

Compiler

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Separate Compilation

 Preprocessor locates each header file and places a copy
of it in the

 translation unit

 Replacing the #include of that header file

 Processes any other preprocessor directives
 #ifndef, #define, etc

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 4 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Separate Compilation

 After the compiler compiles the translation unit to

create the object file
 The translation unit is deleted
 Each translation unit is self-contained

 It cannot use variables or functions that are part of another
 translation unit

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 5 -

Calling functionA() when the code for functionA() is outside the
translation unit produces an error...
Same is true for variables declared outside the translation unit
When this happens…the translation unit has an unresolved
external reference

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Linking

 Each implementation file is separately compiled to yield an
object file

 by a program called the linker

 The linker
– Reads each object file
– Copies it to the executable program

 ...At this time unresolved external references are resolved

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 6 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Linking

 When the linker fails to resolve an external reference

 It generates an unresolved external reference error

 Does not create the executable program

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 7 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Make Files

 The build process requires a place to contain the instructions for

• Which files to compile

• Lists of standard and custom libraries

• The name of the executable program

• Perhaps whether or not debugging information should be

 included in the executable

 Such a place called a makefile

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 8 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Make Files

 The utility that …

 Reads the makefile

 Calls up the preprocessor, compiler, and linker

 … is called the make utility

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 9 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Standard and Custom Libraries

 Compiler vendors provide libraries of compiled code to implement

the
 C++ programming language

 These are called standard libraries

 We may write our own library to contain our favorite functions
 These are called custom libraries

 As part of the make file...
 …we must specify the list of standard and custom libraries

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 10 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Standard and Custom Libraries

 Libraries are distributed with both a ...
• Header file
• Binary file containing the compiled code

 We include
 Header file in implementation file
 Name of the library in the make file

 Then we may make function calls into library
functions.so are used

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 11 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Debug and Release Builds

 A build can include or exclude information that permits
a debugger to

 operate

• If the debugger information is excluded, the executable is
much smaller, however without debugger information, we
can't debug

• If the debugger information is included, the executable is
much larger and slower, however debugger will operate

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 12 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Debug and Release Builds

 Usually a compiler switch toggles between release and debug
builds

 We must use caution when toggling between builds….
 When we perform a debug build, we must be certain to use
 debug libraries in build

 Conversely with a release build we must be certain to use
 release libraries

 Reason
 Memory allocators may be different between debug and
 release builds

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 13 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Linkage, Scope, Storage Classes, and Specifiers

 The terms …

• Linkage,

• Scope,

• Storage classes,

• Storage class specifiers

 Often used interchangeably yet really have distinct meanings.
Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 14 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Linkage

 There are two types of linkage internal and external

 When a variable or a function has
 Internal linkage

 It can be used only in the implementation file in which it has
 been defined...
 …it cannot be shared by code in another implementation file

 External linkage
 Means that the variable or function can be shared with
 another implementation file.

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 15 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Scope

 Scope defines visibility….

• Variables declared inside a function are only visible in that
function their scope is the block of code of the function

• Variables declared outside a function - an external variable
visible to any function in the implementation file
 These external variables are commonly called global
 variables

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 16 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Storage class describes where variables are stored

 C++ has three storage classes...
 automatic

 static

 freestore

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 17 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Automatic Storage Class
 Variables with the automatic storage class are declared inside
 functions

 They have internal linkage and block scope

 These variables only useable in the implementation file where
 they are declared...

 …and further only within the block of code in which they
are

 declared

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 18 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Static Storage Class
 Variables with the static storage class are declared outside of

any
 function

 These are external variables...

 External variables are created before any use of the variable

 External variables always have external linkage

 External variables have the scope of the implementation file

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 19 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Freestore Storage Class

 Variables with the freestore storage class are those the

 programmer creates

 These variables have the linkage and scope of the pointer
 containing the address of the variable in freestore.

 These variables exist until specifically deleted

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 20 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Storage Class Specifier

 Used to provide instructions to the compiler for modifying

the

 Storage class, linkage, or scope of a specific variable or
 function

 Storage class specifiers apply only to the automatic and static
 storage classes

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 21 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Storage Class Specifier

 Storage class specifiers are….

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 22 -

• auto
• register
• static
• extern

auto int data;
register int data;
static int data;
extern int data;

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Auto Storage Class Specifier
 The auto storage class specifier

 Used only with variables to specify the automatic storage
class

 auto storage class defines
 The variable will be stored on the stack
 The variable will be local to the function using it
 The compiler will destroy it automatically when it is no

longer needed

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 23 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Auto Storage Class Specifier

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 24 -

auto int aValue; // Error. No auto variables outside a function

void FunctionA()

{
auto int a; // Ok. auto variables go on the stack

int b; // Ok. auto is assumed
}

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Register Storage Class Specifier
 Instructs the compiler to keep a variable in a register within

the processor if possible

 With the variable in a processor register not in memory
 Cannot take the address of a register variable
 Cannot have a pointer to register variable

 Register storage class is a recommendation to the compiler

 Processing may be faster
Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 25 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Register Storage Class Specifier
 Time to use this storage class is when a variable is going to be
 accessed frequently in a very short period

 Unless you are very aware of what you are doing, typically will
 never use register storage class

 ….Register variables are in a processor register
 Cannot exist for the life of the program
 Cannot declare a register variable outside a function

 To do so requires the static storage class which would require the
 compiler to permanently reserve a processor register for the
 variable…since this is not possible, a register declaration outside a
 function is an error

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 26 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Static Storage Class Specifier

 The static storage class specifier can be used with
 Automatic or static variables
 Functions

 Confusion arises because...
 Name of a storage class is static and
 Name of the storage class specifier is also static

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 27 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Using the Static Storage Class Specifier
 Using the static storage class specifier on a variable that normally
 would be automatic makes the variable static

 Can use the static storage class specifier with variables declared
 inside functions

 When the function is called the first time….
 Variable is created and initialized to zero
 Remains in existence for the remainder of the program
 Scope of the variable remains unchanged
 Can be used only in the block that declared it

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 28 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Static Storage Class Specifier

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 29 -

void CountIt()
{

int count = 0; // auto variable created on each CountIt call
++count;

}

void CountIt()
{

static int count = 0; // variable created on first CountIt call
++count;

}

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Static Storage Class Specifier
 Static storage class specifier changes the linkage of static
 variables to internal linkage
 Such change can only occur with variables declared outside
 functions
 The scope of the variable remains unchanged
 The variable can be used by any function in the implementation
 file

 Internal linkage prevents functions in other implementation files
 from accessing the variable

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 30 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Static Storage Class Specifier

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 31 -

Note: This use of the static storage class specifier is in C++ for
backwards compatibility with C programs.

In C++, we would use a namespace to restrict access to a variable
to the implementation file.

Namespaces are not covered in this course.

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Static Storage Class Specifier
 Using the static storage class specifier with a function limits

the
 scope of the function to the implementation file containing

the
 function

 Only other functions in the same implementation file can call
it

 It is not possible to call a static function from another
implementation file

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 32 -

static void functionA()
{

// some processing
}

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Extern Storage Class
 The extern storage class specifier informs the compiler that the
 variable is not defined in the current implementation file

 The compiler will not check to see if it is actually declared

 When this implementation file is compiled
 It will have an unresolved external reference
 Reference will be left to the linker to resolve
 The location where the variable is defined is not specified

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 33 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Extern Storage Class

 Using the extern storage class specifier prevents the compiler
 from stopping build by generating an unresolved external
 reference error

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 34 -

void countIt()
{

extern int count; // count is declared outside this file
++count;

}

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Extern Storage Class

 The extern storage class specifier with a function works the
same

 as with a variable

 Specifies the function is defined outside the current

 implementation file

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 35 -

extern void countIt(); // function not defined in this file

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Extern Storage Class

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 36 -

Note: Do not confuse the extern storage class specifier with
external variables.

External variables are variables declared outside any function.

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Extern Storage Class

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 37 -

file1.cpp
int data;
++data;

file2.cpp
++data;

file1.cpp
int data;
++data;

file2.cpp
extern int data
++data;

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class

 Extern Storage Class

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 38 -

file1.cpp
static int data;
++data;

file2.cpp
extern int data
++data;

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Storage Class - Summary

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 39 -

Specifier Storage Class Linkage Scope
auto automatic internal declaring block
register automatic internal declaring block
-------- automatic internal declaring block
-------- static external global
static static internal file or declaring block
extern static external global or declaring block

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Const Revisited

 A global variable may be const:

 const double PI = 3.14159;

 Because a const variable must be initialized when it is created….
 …. PI is initialized to 3.14159 when created

 If we want to share this const variable from another implementation
 file we would write

 extern const int PI;

 When the compiler compiles this file what value is assigned to PI?

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 40 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Const Revisited

 Answer is unknown ….. because PI is extern,

 The declaration violates the const rule of initializing a variable with the
 constant value when it is created….
 …as a result, the above line of code will generate an error

 To use
 const double PI = 3.14159;

 In each implementation file we must declare it in each implementation
 file
 ….that is const global variables have internal, or local, linkage

 They behave as static variables

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 41 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Functions Revisited

 Where C++ Finds Functions???
 When we make a function call, C++ locates the function
 according to this decision logic

 If the function is static
 Will use the function in the implementation file

 If the function is not static
 Will use the function from another object file

 If the function can’t be found in the object file
 Library definition will be used

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 42 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Functions Revisited

 When user specified function prototype matches the

function

 prototype of a library function

 …The user function will be selected over the library
function

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 43 -

Storage Classes, Scope and Storage Classes, Scope and
LinkageLinkage
 Summary

 In this lesson we’ve studied

 how to use multiple implementation files

 how to construct a header file

 how to use storage classes correctly

 how share variables among implementation files

Copyright 2001 Oxford
Consulting, Ltd Computer System and programming in C - 44 -

