MACROS

The-€Preprocessor — Tntroduction o

The preprocessor deals strictly in text. Here is a list of the standard preprocessor directives
and macros excluding #define.

#include <filename>, #include “filename” — expands into contents of the given file into
current position. The <> means to search the standard include path for the file while
the *“” means to search the current directory:.

#error message, #warning message — Causes the compiler to either halt or issue a
warning if this line is reached. Useful for debugging.

#pragma — Passes options to the compiler. Options change from compiler to
compiler

#if condition, #elsif condition, #endif — Includes or excludes a block of text dependent
on the value of the condition. #if 0 is useful for removing a block of code from
complication.

__FILE_, LINE_, DATE , func__ - these macros expand into strings
representing g the current f|Ie line, date, and in c99, the current function.

Computer System and programming in C

The-€Preprocessor — #define-basics -

#define macros
#define SOME_LABEL To some list of literals

#define MIN(x,y) ((x) < (y) ? (X) : ()
#define printf(x,...) fprintf(stdout, x, VA ARGS)

Macros can be used for quick and dirty constants.

Though is it often preferable nowadays to do:
const T name = value;
where T is a type. This is because this creates a variable with type info.

Macros can be used to like functions. Think of them as a patterned
search and replace.

Some simple functions are often implemented as just a #define macro.
Common examples are “min” and “printf.” Many libraries implement them
in a fashion similar to the examples above.

You can even do variable argument macros by putting an elipse (“.”) in the
parameter list. Thetag VA ARGS expands to all the extra arguments
with the comma. (You may notice a problem with our definition of
“printf” given our explanation of VA ARGS__. Most compilers extend
the behavior of _ VA ARGS__ expansion to make up for this problem.)

Computer System and programming in C

The-E-Preprocessor — #define-fun! o

#define concat(x,y) x##y
#define mkstr(x) #x

performs a concatenation of the two preprocessor arguments.
This may be useful for autogenerating mangled names or some other sort
of textual manipulation. Thus,

concat(wordA,wordB)
Is equivalent to

wordAwordB

makes the following macro argument a string (with quotes).
It also chomps whitespace so everything is only 1 space. Thus:

mkstr(bu hahaha me lolo weeeeeeee)
becomes

“bu ha ha ha me lo lo weeeeeeee”

Computer System and programming in C

Macros vs. Egggtlons Argument
Evaluation

Macros and functions may behave differently if an
argument is referenced multiple times:

e afunction argument is evaluated once, before the call

e amacro argument is evaluated each time it is
encountered in the macro body.

Example: Dbl(u++)
expands to:
intdbl(x) { return x + x;} #define Dbl(X) xt u++ +
U=10; v = dbl(u++); = 10v=Dbittit) GFF

printf(“u=%d, v=%d", u, v); printf(“u=%d, v=%d", u, v);

prints:u =11, v=20 prints:u =12, v=21

Properties of macros

Macros may be nested
e in definitions, e.g.:

#define Pi 3.1416
#define Twice Pi 2*Pi
* In uses, e.g.:

#define double(x) x+x
#define Pi1 3.1416

if (x>double(Pi)) ...
Nested macros are expanded recursively

hed: fes/www/classes/cs352/springl0/Code/ex.7.Preprocessor

% cpp preproc_3.c | tail -10

int maind)
£
int & = 3;
printf{"double of %d squared is: %dwn", x, x*xix*
printf{"square of %d doubled is: %d\wn", x,

textual

3
% 1

replacement
!

hed: fes/www/classes/cs352/springl0/Code/ex.7.Preprocessor

% cat preproc_4.c
File: preproc_3.cC
A sinple use of the preprocessor: 4

This exanple shows how macros can be nested,
and some problems that nay arise

"
% % ¥ % F ¥

#include <stdio.h>

#define double(x) (X)}+(x)
#define square{x) (xX}*{x}

int nain{)

int x = 3;
printf{"double of %d squared 1is: %d\n", %, double(square(x)>);
printf{"square of %d doubled is: %d\n", %, square{double{x}}};

return 0;
3
%
% gcc -Wall preproc_4.c
% .fa.out
double of 3 squared is: 18
square of 3 doubled is: 36

%
. |

hed: fes/www/classes/cs352/springl0/Code/ex.7.Preprocessor

% cpp preproc_4.c | tail -10

int maind)
£
int & = 3;
printf{"double of %d squared is: Zdun", x, (I d+0{xI*(NIDD;
printf{"square of %d doubled is: zd\n", x, (GO+GI* GO+

return 0;

3
% 1

