

The C Preprocessor – Introduction

The preprocessor deals strictly in text. Here is a list of the standard preprocessor directives
and macros excluding #define.

 #include <filename>, #include “filename” – expands into contents of the given file into
current position. The <> means to search the standard include path for the file while
the “” means to search the current directory.

 #error message, #warning message – Causes the compiler to either halt or issue a
warning if this line is reached. Useful for debugging.

 #pragma – Passes options to the compiler. Options change from compiler to
compiler

 #if condition, #elsif condition, #endif – Includes or excludes a block of text dependent
on the value of the condition. #if 0 is useful for removing a block of code from
complication.

 __FILE__, __LINE__, __DATE__, __func__ – these macros expand into strings
representing the current file, line, date, and in c99, the current function.

Computer System and programming in C

The C Preprocessor – #define basics

#define SOME_LABEL To some list of literals
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#define printf(x,…) fprintf(stdout, x, __VA_ARGS__)

 Macros can be used for quick and dirty constants.

Though is it often preferable nowadays to do:
const T name = value;

where T is a type. This is because this creates a variable with type info.

 Macros can be used to like functions. Think of them as a patterned
search and replace.
Some simple functions are often implemented as just a #define macro.
Common examples are “min” and “printf.” Many libraries implement them
in a fashion similar to the examples above.

You can even do variable argument macros by putting an elipse (“…”) in the
parameter list. The tag __VA_ARGS__ expands to all the extra arguments
with the comma. (You may notice a problem with our definition of
“printf” given our explanation of __VA_ARGS__. Most compilers extend
the behavior of __VA_ARGS__ expansion to make up for this problem.)

#define macros

Computer System and programming in C

The C Preprocessor – #define fun!

#define concat(x,y) x##y
#define mkstr(x) #x

 ## performs a concatenation of the two preprocessor arguments.
This may be useful for autogenerating mangled names or some other sort
of textual manipulation. Thus,

concat(wordA,wordB)

is equivalent to

wordAwordB

 # makes the following macro argument a string (with quotes).
It also chomps whitespace so everything is only 1 space. Thus:

mkstr(bu ha ha ha me lo lo weeeeeeee)

becomes

“bu ha ha ha me lo lo weeeeeeee”

#define macros string manipulation operators

Computer System and programming in C

Macros vs. Functions: Argument
Evaluation
 Macros and functions may behave differently if an

argument is referenced multiple times:
 a function argument is evaluated once, before the call
 a macro argument is evaluated each time it is

encountered in the macro body.
 Example:

5

int dbl(x) { return x + x;}
…
u = 10; v = dbl(u++);
printf(“u = %d, v = %d”, u, v);

prints: u = 11, v = 20

#define Dbl(x) x + x
…
u = 10; v = Dbl(u++);
printf(“u = %d, v = %d”, u, v);

prints: u = 12, v = 21

Dbl(u++)
expands to:

u++ +
u++

Properties of macros

 Macros may be nested
 in definitions, e.g.:

#define Pi 3.1416
#define Twice_Pi 2*Pi

 in uses, e.g.:
#define double(x) x+x
#define Pi 3.1416
…
if (x > double(Pi)) …

 Nested macros are expanded recursively
6

What happened?

7

textual
replacement

!

Avoiding the problem

8

What happened

9

