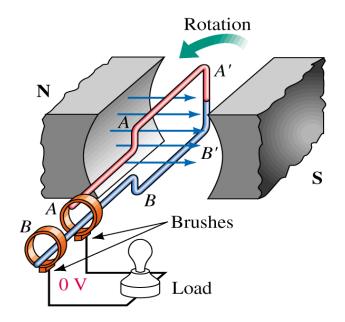
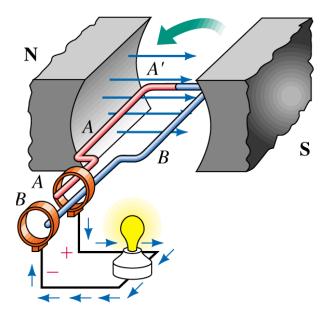
## **AC** Fundamentals

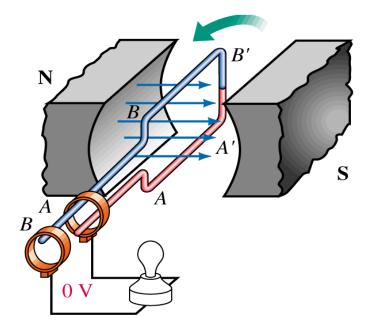

## **Alternating Current**

- Voltages of ac sources alternate in polarity and vary in magnitude
- Voltages produce currents that vary in magnitude and alternate in direction

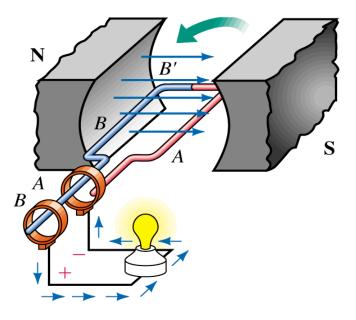

## **Alternating Current**

- A sinusoidal ac waveform starts at zero
  - Increases to a positive maximum
  - Decreases to zero
  - Changes polarity
  - Increases to a negative maximum
  - Returns to zero
- Variation is called a cycle

# **Generating AC Voltages**




(a) 0° Position: Coil sides move parallel to flux lines. Since no flux is being cut, induced voltage is zero.




(b) 90° Position: Coil end A is positive with respect to B. Current direction is out of slip ring A.

## **Generating AC Voltages**



(c) 180° Position: Coil again cutting no flux. Induced voltage is zero.



(d) 270° Position: Voltage polarity has reversed, therefore, current direction reverses.

## AC Voltage-Current Conventions

- Assign a reference polarity for source
- When voltage has a positive value
  - Its polarity is same as reference polarity
- When voltage is negative
  - Its polarity is opposite that of the reference polarity

## AC Voltage-Current Conventions

- Assign a reference direction for current that leaves source at positive reference polarity
- When current has a positive value
  - Its actual direction is same as current reference arrow

## AC Voltage-Current Conventions

- When current is negative
  - Its actual direction is opposite that of current reference arrow

## Frequency

- Number of cycles per second of a waveform
  - Frequency
  - Denoted by *f*
- Unit of frequency is hertz (Hz)
- I Hz = 1 cycle per second

# Period

- Period of a waveform
  - Time it takes to complete one cycle
- Time is measured in seconds
- The period is the reciprocal of frequency
  T = 1/f

#### Amplitude and Peak-to-Peak Value

- Amplitude of a sine wave
  - Distance from its average to its peak
- We use  $E_m$  for amplitude
- Peak-to-peak voltage
  - Measured between minimum and maximum peaks
- We use  $E_{\rho\rho}$  or  $V_{\rho\rho}$

## Peak Value

- Peak value of an ac voltage or current
  - Maximum value with respect to zero
- If a sine wave is superimposed on a dc value
  - Peak value of combined wave is sum of dc voltage and peak value of ac waveform amplitude

## The Basic Sine Wave Equation

- Voltage produced by a generator is
  - $e = E_m \sin \alpha$
- *E<sub>m</sub>* is maximum (peak) voltage
- α is instantaneous angular position of rotating coil of the generator

# The Basic Sine Wave Equation

- Voltage at angular position of sine wave generator
  - May be found by multiplying  $E_m$  times the sine of angle at that position

# **Angular Velocity**

• Rate at which the generator coil rotates with respect to time,  $\omega$  (Greek letter omega)

# **Angular Velocity**

 Units for ω are revolutions/second, degrees/sec, or radians/sec.

 $\omega = \frac{\alpha}{t}$  $\alpha = \omega t$ 

# Radian Measure

- $\blacktriangleright \omega$  is usually expressed in radians/second
- >  $2\pi$  radians =  $360^{\circ}$
- > To convert from degrees to radians, multiply by  $\pi/180$

# Radian Measure

- > To convert from radians to degrees, multiply by  $180/\pi$
- When using a calculator
  - Be sure it is set to radian mode when working with angles measured in radians

## Relationship between $\omega$ , *T*, and *f*

• One cycle of a sine wave may be represented by  $\alpha = 2\pi$  rads or t = T sec

$$\alpha = \omega t$$
$$\omega T = 2\pi$$
$$\omega = \frac{2\pi}{T}$$
$$\omega = 2\pi f$$

#### Voltages and Currents as Functions of Time

- Since  $\alpha = \omega t$ , the equation  $e = E_m \sin \alpha$ becomes  $e(t) = E_m \sin \omega t$
- Also,  $v(t) = V_m \sin \omega t$  and  $i(t) = I_m \sin \omega t$

#### Voltages and Currents as Functions of Time

- Equations used to compute voltages and currents at any instant of time
- Referred to as instantaneous voltage or current

# Voltages and Currents with Phase Shifts

- If a sine wave does not pass through zero at t
  = 0, it has a phase shift
- For a waveform shifted left

• 
$$v = V_m \sin(\omega t + \theta)$$

For a waveform shifted right

• 
$$v = V_m \sin(\omega t - \theta)$$