Active Power: (P)

- Alternative words used for Real Power (Actual Power, True Power, Watt-full Power, Useful Power, Real Power, and Active Power)
- In a DC Circuit, power supply to the DC load is simply the product of Voltage across the load and Current flowing through it i.e., $\mathrm{P}=\mathrm{VI}$. because in DC Circuits, there is no concept of phase angle between current and voltage. In other words, there is no Power factor in DC Circuits.
- But the situation is Sinusoidal or AC Circuits is more complex because of phase difference between Current and Voltage. Therefore average value of power (Real Power) is $\mathrm{P}=\mathrm{Vl} \operatorname{Cos} \theta$ is in fact supplied to the load.
- In AC circuits, When circuit is pure resistive, then the same formula used for power as used in $D C$ as $P=V I$.

Real Power formulas:

- $\mathrm{P}=\mathrm{V} \mathrm{I}$
- $\mathrm{P}=\mathrm{VI} \operatorname{Cos} \theta$

Circuits)
(In DC circuits)
(in Single phase AC
or
(in Three Phase AC

Circuits)

- $\mathrm{P}=3 \mathrm{~V}_{\mathrm{Ph}} \mathrm{I}_{\mathrm{Ph}} \operatorname{Cos} \theta$
- $P=\sqrt{ }\left(S^{2}-Q^{2}\right)^{\text {or }}$
- $P=\sqrt{ }\left(V A^{2}-V A R^{2}\right)$ or
- Real or True power $=\sqrt{ }$ (Apparent Power² Reactive Power ${ }^{2}$) or
- $k W=\sqrt{ }\left(k V A^{2}-\right.$ kVAR $\left.^{2}\right)$

Reactive Power: (Q)

- Also known as (Use-less Power, Watt less Power)
- The powers that continuously bounce back and forth between source and load is known as reactive Power (Q)
- Power merely absorbed and returned in load due to its reactive properties is referred to as reactive power
- The unit of Active or Real power is Watt where $1 \mathrm{~W}=1 \mathrm{~V} \times 1 \mathrm{~A}$.
- Reactive power represent that the energy is first stored and then released in the form of magnetic field or electrostatic field in case of inductor and capacitor respectively.
- Reactive power is given by $\mathrm{Q}=\mathrm{VI} \operatorname{Sin} \theta$ which can be positive (+ve) for inductive, negative (-Ve) for capacitive load.
- The unit of reactive power is Volt-Ampere reactive. I.e. VAR where $1 \mathrm{VAR}=1 \mathrm{~V} \times 1 \mathrm{~A}$.
- In more simple words, in Inductor or Capacitor, how much magnetic or electric field made by $1 \mathrm{~A} \times 1 \mathrm{~V}$ is called the unit of reactive power.

Reactive power formulas:

- $\mathrm{Q}=\mathrm{V}$ I $\operatorname{Sin} \theta$
- Reactive Power $=\sqrt{ }\left(\right.$ Apparent Power ${ }^{2}$ True power²)
$\operatorname{VAR}=\sqrt{ }\left(V^{2}-P^{2}\right)$
$k V A R=\sqrt{ }\left(k^{2} A^{2}-k W^{2}\right)$

Apparent Power: (S)

- The combination of reactive power and true power is called apparent power
- The product of voltage and current if and only if the phase angle differences between current and voltage are ignored.
- Total power in an AC circuit, both dissipated and absorbed/returned is referred to as apparent power
- In an AC circuit, the product of the r.m.s voltage and the r.m.s current is called apparent power.
- Apparent power formulas:
- $\mathrm{S}=\mathrm{V}$ I
- Apparent Power $=\sqrt{ }\left(\right.$ True power $^{2}+$ Reactive Power $\left.{ }^{2}\right)$

Power Triangle

