Phasors

The position of a phasor at any instant can be expressed as a positive angle, measured counterclockwise from 0° or as a negative angle equal to $\theta-360^{\circ}$.

Phasors

Phasors allow ac calculations to use basic trigonometry. The sine function in trigonometry is the ratio of the opposite side of a right triangle to the adjacent side.

Phasors

The sine wave can be represented as the projection of a vector rotating at a constant rate. This rotating vector is called a phasor.

Phase shift

The phase of a sine wave is an angular measurement that specifies the position of a sine wave relative to a reference. To show that a sine wave is shifted to the left or right of this reference, a term is added to the equation given previously.

$$
v=V_{\mathrm{P}} \sin (\theta \pm \phi)
$$

where

```
\phi= Phase shift
```


Phase shift

Example of a wave that lags the reference

Phase shift

Example of a wave that leads the reference

Angular velocity of a phasor

When a phasor rotates through 360° or 2π radians, one complete cycle is traced out.
The velocity of rotation is called the angular velocity (ω).

```
\omega=2\pif
```

(Note that this angular velocity is expressed in radians per second. intaneous voltage at any point in time is given by

```
V= V
```


Superimposed dc and ac V

Frequently dc and ac voltages are together in a waveform. They can be added algebraically, to produce a composite waveform of an ac voltage "riding" on a dc level.

(a) $V_{\mathrm{DC}}>V_{p}$. The sine wave never goes negative.

(b) $V_{\mathrm{DC}}<V_{p}$. The sine wave reverses polarity during a portion of its cycle, as indicated by the gray area.

Pulse definitions

Ideal pulses

(a) Positive-going pulse

(b) Negative-going pulse

Pulse definitions

Non-ideal pulses

(a) Rise and fall times

(b) Pulse width

Notice that rise and fall times are measured between the 10\% and 90% levels whereas pulse width is measured at the 50% level.

Triangular and sawtooth waves

Triangular and sawtooth waveforms are formed by voltage or current ramps (linear increase/decrease)

Triangular waveforms have positive-going and negativegoing ramps of equal slope.

The sawtooth waveform consists of two ramps, one of much longer duration than the other.

Harmonics

All repetitive non-sinusoidal waveforms are composed of a fundamental frequency (repetition rate of the waveform) and harmonic frequencies.

Odd harmonics are frequencies that are odd multiples of the fundamental frequency.

Even harmonics are frequencies that are even multiples of the fundamental frequency.

Selected Key Terms

Sine wave A type of waveform that follows a cyclic sinusoidal pattern defined by the formula $y=A \sin \theta$.

Alternating current

Period (T)
Current that reverses direction in response to a change in source voltage polarity.

Frequency (f) The time interval for one complete cycle of a periodic waveform.

Hertz

A measure of the rate of change of a periodic function; the number of cycles completed in 1 s .

The unit of frequency. One hertz equals one cycle per second.

Selected Key Terms

Instantaneous value The voltage or current value of a waveform at a given instant in time.
Peak value
The voltage or current value of a waveform at its
Peak-to-peak value maximum positive or negative points.
$r m s$ value The voltage or current value of a waveform measured from its minimum to its maximum points.

The value of a sinusoidal voltage that indicates its heating effect, also known as effective value. It is equal to 0.707 times the peak value. rms stands for root mean square.

Selected Key Terms

Radian A unit of angular measurement. There are 2π radians in one complete 360° revolution.

Phasor
A representation of a sine wave in terms of its magnitude (amplitude) and direction (phase angle).
Amplitude
Pulse The maximum value of a voltage or current.

A type of waveform that consists of two equal and
Harmonics opposite steps in voltage or current separated by a time interval.

The frequencies contained in a composite waveform, which are integer multiples of the pulse repetition frequency.

