KIRCHOFF'S LAWS

Gustav Robert Kirchhoff (12 March 1824-17 October 1887)

was a German physicist who contributed to the fundamental understanding of electrical circuits spectroscopy and the emission of black-body radiation by heated objects.

He also contributed to optics, carefully solving Maxwell's equations to provide a solid foundation for Huygens' principle (and correct it in the process

CIRCUIT DEFINITIONS

Node - any point where 2 or more circuit elements are connected together Junction -any point where three or more than three branch meets.

- Wires usually have negligible resistance
- Each node has one voltage (w.r.t. ground)

Branch - a circuit element between two nodes
Loop - a collection of branches that form a closed path returning to the same node
without going through any other nodes or branches twice
MESH - A mesh is a loop that has no other loops inside of it.

OHM'S LAW

Georg Simon Ohm (German 16 March 1789 - 6 July 1854) was a German physicist and mathematician As a school teacher.

Ohm's law states that the current through a conductor between two points is directly proportional to the potential difference across the two points. Introducing the constant of proportionality, the resistance, one arrives at the usual mathematical equation that describes this relationship:

EXAMPLE

How many nodes, branches \& loops?

EXAMPLE

Three nodes

BASIC ELECTRICAL ENGINEERING (REE-101)

EXAMPLE

5 Branches

BASIC ELECTRICAL ENGINEERING (REE-101)

EXAMPLE

Five Loops, and three mesh

BASIC ELECTRICAL ENGINEERING (REE-101)

KIRCHOFF'S VOLTAGE LAW (KVL)

The algebraic sum of voltages around each loop is zero

- Beginning with one node, add voltages across each branch in the loop (if you encounter a + sign first) and subtract voltages (if you encounter a - sign first)
Σ voltage drops $\boldsymbol{\Sigma}$ voltage rises $=0$
Or Σ voltage drops $=\Sigma$ voltage rises

EXAMPLE

Kirchoff's Voltage Law around $1^{\text {st }}$ Loop

Assign current variables and directions
Use Ohm's law to assign voltages and polarities consistent with passive devices (current entrastattberm ride)

EXAMPLE

Kirchoff's Voltage Law around $1^{\text {st }}$ Loop

Starting at node A, add the $1^{\text {st }}$ voltage drop: $+l_{1} R_{1}$

EXAMPLE

Kirchoff's Voltage Law around $1^{\text {st }}$ Loop

Add the voltage drop from B to C through \mathbf{R}_{2} : $+I_{1} R_{1}+I_{2} R_{2}$

EXAMPLE

Kirchoff's Voltage Law around $1^{\text {st }}$ Loop

Subtract the voltage rise from C to A through $V s:+I_{1} R_{1}+I_{2} R_{2}-V s=0$ Notice that the sign of each term matches the polarity enfopuntered 1 st

CIRCUIT ANALYSIS

When given a circuit with sources and resistors having fixed values, you can use Kirchoff's two laws and Ohm's law to determine all branch voltages and currents

CIRCUIT ANALYSIS

By Ohm's law: $\mathrm{V}_{\mathrm{AB}}=\mathrm{I} \cdot 7 \Omega$ and $\mathrm{V}_{\mathrm{BC}}=\mathrm{I} \cdot 3 \Omega$
By KVL: $V_{A B}+V_{B C}-12 v=0$
Substituting: $\mathrm{I} \cdot 7 \Omega+\mathrm{I} \cdot \mathbf{3 \Omega}-12 \mathrm{v}=0$
Solving: I=1.2 A

CIRCUIT ANALYSIS

Since $V_{A B}=I .7 \Omega$ and $V_{B C}=I .3 \Omega$
And $\mathrm{I}=1.2 \mathrm{~A}$
So $V_{A B}=8.4 \mathrm{v}$ and $V_{B C}=3.6 \mathrm{v}$

SERIES RESISTORS

KVL: $+\mathrm{I} \cdot 10 \Omega-12 \mathrm{v}=0$, \quad So $\mathrm{I}=1.2 \mathrm{~A}$
From the viewpoint of the source, the 7 and 3 ohm resistors in series are equivalent to the 10 ohms

SERIES RESISTORS

To the rest of the circuit, series resistors can be replaced by an equivalent resistance equal to the sum of all resistors

Series resistors (same current through all)

KIRCHOFF'S CURRENT LAW (KCL)

The algebraic sum of currents entering a node is zero

- Add each branch current entering the node and subtract each branch current leaving the node
$\boldsymbol{\Sigma}$ currents in $\boldsymbol{\Sigma} \boldsymbol{\Sigma}$ currents out $=0$
Or Σ currents in $=\Sigma$ currents out

EXAMPLE

Kirchoff's Current Law at B

Assign current variables and directions
Add currents in, subtract currents out: $I_{1}-I_{2}-I_{3}+I s=0$
BASIC ELECTRICAL ENGINEERING (REE-101)

CIRCUIT ANALYSIS

B
By KVL: $-\mathrm{I}_{1} \cdot \mathbf{8 \Omega}+\mathrm{I}_{\mathbf{2}} \cdot \mathbf{4 \Omega}=\mathbf{0}$
Solving:
$I_{2}=2 \cdot I_{1}$
By KCL: $\quad 10 \mathrm{~A}=\mathrm{I}_{1}+\mathrm{I}_{2}$
Substituting: $\quad 10 \mathrm{~A}=\mathrm{I}_{1}+2 \cdot \mathrm{I}_{1}=\mathbf{3} \cdot \mathrm{I}_{1}$
So $I_{1}=3.33 \mathrm{~A}$ and $\mathrm{I}_{2}=6.67 \mathrm{~A}$
And $V_{A B}=26.33$ volts

CIRCUIT ANALYSIS

B
By Ohm's Law: $V_{A B}=10 \mathrm{~A} \cdot 2.667 \Omega$
So $V_{A B}=26.67$ volts
Replacing two parallel resistors (8 and 4Ω)
by one equivalent one produces the same
result from the viewpoint of the rest of the circuit.

PARALLEL RESISTORS

The equivalent resistance for any number of resistors in parallel (i.e. they have the same voltage across each resistor):

1

$$
\text { Req }=1 / R_{1}+1 / R_{2}+\cdots+1 / R_{N}
$$

For two parallel resistors:

$$
R e q=R_{1} \cdot \mathbf{R}_{2} /\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)
$$

EXAMPLE CIRCUIT

Solve for the currents through each resistor And the voltages across each resistor

EXAMPLE CIRCUIT

Using Ohm's law, add polarities and expressions for each resistor voltage

EXAMPLE CIRCUIT

Write $1^{\text {st }}$ Kirchoff's voltage law equation $-50 \mathrm{v}+$

EXAMPLE CIRCUIT

Write $2^{\text {nd }}$ Kirchoff's voltage law equation
$+$

EXAMPLE CIRCUIT

Write Kirchoff's current law equation at A

EXAMPLE CIRCUIT

We now have 3 equations in 3 unknowns, so we can solve for the currents through each resistor, that are used to find the voltage across each resistor

Since $\quad I_{1}-I_{2}=I_{3}=0, \quad I_{1}=I_{2}+I_{3}$
Substituting into the 1st KVL equation

$$
\begin{aligned}
& -50 \mathrm{v}+\left(\mathrm{I}_{2}+\mathrm{I}_{3}\right) \cdot 10 \Omega+\mathrm{I}_{2} \cdot 8 \Omega=0 \\
& \text { or } \mathrm{I}_{2} \cdot 18 \Omega+\mathrm{I}_{3} \cdot 10 \Omega=50 \text { volts }
\end{aligned}
$$

EXAMPLE CIRCUIT

But from the $2^{\text {nd }} \mathrm{KVL}$ equation, $\mathrm{I}_{2}=1.25 \cdot I_{3}$
Substituting into $1^{\text {st }} \mathrm{KVL}$ equation:
$\left(1.25 \cdot I_{3}\right) \cdot 18 \Omega+I_{3} \cdot 10 \Omega=50$ volts
Or: $I_{3} \cdot 22.5 \Omega+I_{3} \cdot 10 \Omega=50$ volts
Or: $I_{3} \cdot 32.5 \Omega=50$ volts
Or: $I_{3}=50$ volts/32.5 Ω
Or: $\mathrm{I}_{3}=1.538 \mathrm{amps}$

EXAMPLE CIRCUIT

Since $I_{3}=1.538 \mathrm{amps}$

$$
\mathrm{I}_{2}=1.25 \cdot \mathrm{I}_{3}=1.923 \mathrm{amps}
$$

Since $I_{1}=I_{2}+I_{3}, l_{1}=3.461 \mathrm{amps}$
The voltages across the resistors:
$\mathrm{I}_{1} \cdot 10 \Omega=34.61$ volts
$\mathrm{I}_{2} \cdot 8 \Omega=15.38$ volts
$\mathrm{I}_{3} \cdot 6 \Omega=9.23$ volts
$\mathrm{I}_{3} \cdot 4 \Omega=6.15$ volts

EXAMPLE CIRCUIT

Solve for the currents through each resistor And the voltages across each resistor using Series and parallel simplification.

EXAMPLE CIRCUIT

The 6 and 4 ohm resistors are in series, so are combined into $6+4=10 \Omega$

BASIC ELECTRICAL ENGINEERING (REE-101)

EXAMPLE CIRCUIT

The 8 and 10 ohm resistors are in parallel, so are combined into $8 \cdot 10 /(8+10)=14.4 \Omega$

BASIC ELECTRICAL ENGINEERING (REE-101)

EXAMPLE CIRCUIT

The 10 and 4.4 ohm resistors are in series, so are combined into $10+4=14.4 \Omega$

EXAMPLE CIRCUIT

Writing KVL, $\mathrm{I}_{1} \cdot \mathbf{1 4 . 4 \Omega} \mathbf{- 5 0} \mathbf{v}=\mathbf{0}$ Or $I_{1}=50 \mathrm{v} / 14.4 \Omega=3.46 \mathrm{~A}$

EXAMPLE CIRCUIT

If $I_{1}=3.46 \mathrm{~A}$, then $\mathrm{I}_{1} \cdot \mathbf{1 0} \Omega=\mathbf{3 4 . 6} \mathbf{v}$ So the voltage across the $\mathbf{8 \Omega = 1 5 . 4 \mathrm { v }}$

EXAMPLE CIRCUIT

If $\mathrm{I}_{2} \cdot \mathbf{8} \Omega=\mathbf{1 5 . 4} \mathrm{v}$, then $\mathrm{I}_{2}=\mathbf{1 5 . 4} / \mathbf{8}=1.93 \mathrm{~A}$ By KCL, -

KIRCHHOFF'S VOLTAGE LAW (KVL)

Fig. 9-2: Series-parallel circuit illustrating Kirchhoff's laws.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. ${ }^{\text {E C TRICAL ENGINEERING (REE-101) }}$

KIRCHHOFF'S VOLTAGE LAW (KVL)

In Figure 9-2, for the inside loop with the source V_{T}, going counterclockwise from point B ,
$90 \mathrm{~V}+120 \mathrm{~V}+30 \mathrm{~V}=\mathbf{2 4 0 V}$

If 240 V were on the left side of the equation, this term would have a negative sign.

The loop equations show that KVL is a practical statement that the sum of the voltage drops must equal the applied voltage.

KIRCHHOFF'S VOLTAGE LAW (KVL)

The algebraic sum of the voltage rises and IR voltage drops in any closed path must total zero.

$-V_{4}-V_{5}+V_{3}=0$
For the loop CEFDC without source the equation is

$$
\begin{aligned}
-40 V-80 V+120 V & =0 \\
0 & =0
\end{aligned}
$$

Fig. 9-2: Series-parallel circuit illustrating Kirchhoff's laws.

