NODE-VOLTAGE ANALYSIS

- A principal node is a point where three or more currents divide or combine, other than ground.
- The method of node voltage analysis uses algebraic equations for the node currents to determine each node voltage.
- Use KCL to determine node currents
- Use Ohm's Law to calculate the voltages.
- The number of current equations required to solve a circuit is one less than the number of principal nodes.
- One node must be the reference point for specifying the voltage at any other node.

NODE-VOLTAGE ANALYSIS

- Finding the voltage at a node presents an advantage: A node voltage must be common to two loops, so that voltage can be used for calculating all voltages in the loops.

NODE-VOLTAGE ANALYSIS

Fig. 9-7: Method of node-voltage analysis for the same circuit as in Fig. 9-5.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. LECTRICAL ENGINEERING (REE-101)

NODE-VOLTAGE ANALYSIS

Node Voltage Method

$$
\begin{aligned}
& \text { At node } \mathbf{N}: \mathbb{I}_{1}+\mathbb{I}_{2}=\mathbb{I}_{3} \\
& \text { or } \\
& \frac{\mathbf{V}_{\mathbf{R}_{1}}}{\mathbf{R}_{\mathbf{1}}}+\frac{\mathbf{V}_{\mathbf{R}_{\mathbf{2}}}}{\mathbf{R}_{\mathbf{2}}}=\frac{\mathbf{V}_{\mathbf{N}}}{\mathbf{R}_{\mathbf{3}}}
\end{aligned}
$$

NODE-VOLTAGE ANALYSIS

Fig. 9-7

$\mathrm{V}_{\mathrm{R} 1} / \mathrm{R}_{1}+\mathrm{V}_{\mathrm{R} 2} / \mathrm{R}_{2}=\mathrm{V}_{\mathrm{N}} / \mathrm{R}_{3}$

$$
\mathrm{V}_{\mathrm{R} 1} / 12+\mathrm{V}_{\mathrm{R} 2 \text { asic }} / 3=\mathrm{V}_{\mathrm{N}} / 6
$$

NODE-VOLTAGE ANALYSIS

$$
V_{R 1}+V_{N}=84 \text { or } V_{R 1}=84-V_{N}
$$

Fig. 9-7
For the loop with V_{2} of 21 V ,

$$
V_{R 2}+V_{N}=21 \text { or } V_{R 2}=21-V_{N}
$$

Substituting values
$I_{1}+I_{2}=I_{3}$
Using the value of each V in terms of V_{N} $84-\mathrm{V}_{\mathrm{N}} / 12+21-\mathrm{V}_{\mathrm{N}} / 3=\mathrm{V}_{\mathrm{N}} / 6$

NODE-VOLTAGE ANALYSIS

Fig. 9-7

This equation has only one unknown, V_{N}. Clearing fractions by multiplying each term by 12 , the equation is

$$
\begin{aligned}
\left(84-V_{N}\right)+4\left(21-V_{N}\right) & =2 V_{N} \\
84-V_{N}+84-4 V_{N} & =2 V_{N} \\
-7 V_{N} & =-168 \\
V_{N} & =24 V
\end{aligned}
$$

NODE-VOLTAGE ANALYSIS

Calculating All Voltages and Currents

Node Equations

- Applies KCL to currents in and out of a node point.
- Currents are specified as V/R so the equation of currents can be solved to find a node voltage.

Loop Equations
Applies KVL to the voltages in a closed path.
Voltages are specified as IR so the equation of voltages can be solved to find a loop current.

METHOD OF MESH CURRENTS

- A mesh is the simplest possible loop.
- Mesh currents flow around each mesh without branching.
- The difference between a mesh current and a branch current is that a mesh current does not divide at a branch point.
- A mesh current is an assumed current; a branch current is the actual current.
- IR drops and KVL are used for determining mesh currents.

METHOD OF MESH CURRENTS

- The number of meshes is the number of mesh currents. This is also the number of equations required to solve the circuit.

Fig. 9-8: The same circuit as Fig. 9-5 analyzed as two meshes.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

METHOD OF MESH CURRENTS

- A clockwise assumption is standard. Any drop in a mesh produced by its own mesh current is considered positive because it is added in the direction of the current.
- Mesh A: $18 \mathrm{I}_{\mathrm{A}}-6 \mathrm{I}_{\mathrm{B}}=84 \mathrm{~V}$
- Mesh B: $6 I_{A}+9 I_{B}=-21 V$

METHOD OF MESH CURRENTS

The mesh drops are written collectively here:

Mesh A: $18 \mathrm{I}_{\mathrm{A}}-6 \mathrm{I}_{\mathrm{B}}=84$
Mesh B: $-6 \mathrm{I}_{\mathrm{A}}+9 \mathrm{I}_{\mathrm{B}}=-21$
Fig. 9-8: The same circuit as Fig. 9-5 analyzed as two meshes.

METHOD OF MESH CURRENTS

Use either the rules for meshes with mesh currents or the rules for loops with branch currents, but do not mix the two methods.

To eliminate I_{B} and solve for I_{A}, divide the first equation by 2 and the second by 3 . then

$$
\begin{aligned}
& 9 I_{A}-3 I_{B}=42 \\
& -2 I_{A}+3 I_{B}=-7
\end{aligned}
$$

Add the equations, term by term, to eliminate I_{B}. Then

$$
\begin{align*}
7 I_{A} & =35 \tag{13}\\
I_{A} & =5 A \tag{REE-101}
\end{align*}
$$

METHOD OF MESH CURRENTS

Fig. 9-8: The same circuit as Fig. 9-5 analyzed as two meshes.
To calculate I_{B}, substitute 5 for I_{A} in the second equation:

$$
\begin{aligned}
-2(5)+3 I_{B} & =-7 \\
3 I_{B} & =-7+10=3 \\
I_{B} & =1 A
\end{aligned}
$$

The positive solutions mean that the electron flow for both I_{A} and I_{B} is actually clockwise, as assumed.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. ECTRICAL ENGINEERING (REE-101)

