Waveforms

- Electrical Waveforms are basically visual representations of the variation of a voltage or current over time. In plain English this means that if we plotted these voltage or current variations on a piece of graph paper against a base (x-axis) of time, (t) the resulting plot or drawing would represent the shape of a Waveform as shown.

Waveforms

A wave is a disturbance. Unlike water waves, electrical waves cannot be seen directly but they have similar characteristics. All periodic waves can be constructed from sine waves, which, why sine waves are fundamental.

Sine waves

Sine waves are characterized by the amplitude and period. The amplitude is the maximum value of a voltage or current; the period is the time interval for one complete cycle.

The amplitude (A) of this sine wave is 20 V

The period is $50.0 \mu \mathrm{~s}$

Sine waves

The period of a sine wave can be measured between any two corresponding points on the waveform.

By contrast, the amplitude of a sine wave is only measured from the center to the maximum point.

Frequency

Frequency (f) is the number of cycles that a sine wave completes in one second.

Frequency is measured in hertz (Hz).

If 3 cycles of a wave occur in one second, the frequency is

