Electrical Machine

- An electrical machine is the apparatus that converts energy in three categories:
 - Generators which convert mechanical
 - energy to electrical energy.
- Motors which convert electrical energy to mechanical energy, and
- Transformers which changes the voltage level of an alternating current.

electro mechanical energy conversion DC machines

 Very few problems can be solved using Lorentz force, where currentcarrying elements and simple structures exist.
 Most electromechanical-energy-conversion devices contain magnetic material and forces can not be calculated from Lorentz force.
 Thus, We will use ENERGY METHOD based on conservation of energy.

✓ Electrical terminals: *e* and *i* ✓ Mechanical terminals: *f*_{fld} and *x* ✓ Losses separated from energy storage mechanism
 ✓ Interaction through magnetic stored energy

Time rate of change of W_{fld} (field energy) equals to the difference of input electrical power and output mechanical power for lossless systems.

 $dW_{fld} = i \, d\lambda - f_{fld} \, dx$

 $\frac{dW_{fld}}{dt} = e\,i - f_{fld}\,\frac{dx}{dt}$

or

Force can be solved as a function of flux linkage λ and position *x*.

ENERGY BALANCE

Energy neither created nor destroyed, it only changes the form.

Energy balance equation is written for motor action below

Energy input		Mechanical	1	Increase in		Energy
from electric	=	energy	+	energy stored	+	converted
sources		output	C.F.C	in magnetic field	1000	to heat

For lossless magnetic-energy-storage system

$$dW_{elec} = dW_{mech} + dW_{fld}$$

 dW_{elec} : Differential electrical energy input dW_{mech} : Differential mechanical energy output dW_{fld} : Differential change in magnetic stored energy

ENERGY IN SINGLY-EXCITED MAGNETIC FIELD SYSTEMS

Schematic of an electromagnetic relay.

electro mechanical energy conversion DC machines

✓ The magnetic circuit can be described by an inductance which is a function of the geometry and permeability of the magnetic material.
 ✓ When air-gap exist in most cases R_{gap}>>R_{core} and energy storage occurs in the gap.

Magnetic nonlinearity and core losses neglected in practical devices.
 Flux linkage and current linearly related.

✓ Energy equation^{*k*}

 $dW_{fl} = i d\lambda - f_{fl} dx$ $\checkmark W_{fl}$ uniquely specified by the value of λ and x. Thus, λ and x are called **STATE VARIABLES**. Magnetic stored energy W_{fld} uniquely determined by λ and x regardless of how they are brought to their final values.

$$W_{fld} = \int dW_{fld} + \int dW_{fld}$$
path 2a path 2b

$$W_{fld}(\lambda_0, x_0) = \int_0^{\lambda_0} i(\lambda, x_0) d\lambda$$

OR magnetic stored energy:

$$W_{fld} = \int_{V} \left(\int_{0}^{B} H \, dB' \right) dV$$

Integration paths for W_{fld} . Figure 3.5

Example :The relay shown on the figure is made of infinitely-permeable magnetic material with a movable plunger, also of infinitely-permeable material. The height of the plunger is much greater than the air-gap length (h>>g). Calculate the magnetic stored energy W_{fld} as a function of plunger position (0<x<d) for N=1000 turns, g=2 mm, d=0.15 m, *l*=0.1 m, and i=10 A.

DETERMINATION OF MAGNETIC FORCE AND TORQUE FROM ENERGY

Consider any state function $F(x_1, x_2)$, the total differential of F with respect to the two variables x_1 and x_2

$$dF(x_1, x_2) = \frac{\partial F}{\partial x_1} \bigg|_{x_2} dx_1 + \frac{\partial F}{\partial x_2} \bigg|_{x_1} dx_2$$

Similarly, for energy function $W_{fld}(\lambda, x)$

$$dW_{fld}(\lambda, x) = \frac{\partial W_{fld}}{\partial \lambda} \bigg|_{x} d\lambda + \frac{\partial W_{fld}}{\partial x} \bigg|_{\lambda} dx$$

$$dW_{fld}(\lambda, x) = i \, d\lambda - f_{fld} \, dx$$

 $i = \frac{\partial W_{fld}}{\partial \lambda}$ $f_{fld} = -\frac{\partial W_{fld}}{\partial x}$

Once we know the energy, current and more importantly force can be calculated.

For a system with rotating mechanical terminal

$$f_{fld} \to T_{fld}$$

$$x \rightarrow \theta$$

 $dW_{fld}(\lambda,\theta) = i \, d\lambda - T_{fld} \, d\theta$

$$T_{fld} = -\frac{\partial W_{fld}(\lambda, \theta)}{\partial \theta}$$

Types of electrical machine

