Problem

•Make the current in the voltage divider about 10 times I_B to simplify the analysis. Use $V_B = 3V$ and I = 0.2mA.

(a) R_{B1} and R_{B2} form a voltage divider.

Assume I >> I_B I =
$$V_{CC}/(R_{B1} + R_{B2})$$

.2mA = 9 /(R_{B1} + R_{B2})

AND

$$V_B = V_{CC}[R_{B2}/(R_{B1} + R_{B2})]$$

$$3 = 9 [R_{B2}/(R_{B1} + R_{B2})]$$
, Solve for R_{B1} and R_{B2} .

$$R_{B1} = 30K\Omega$$
, and $R_{B2} = 15K\Omega$.

Problem

Find the operating point

- •Use the Thevenin equivalent circuit for the base
- Makes the circuit simpler

$$\bullet$$
 V_{BB} = V_B = 3V

- RBB is measured with voltage sources grounded
- R_{BB} = R_{B1} | | R_{B2} = 30K Ω || 15K Ω = .10K Ω

Problem

Write B-E loop and C-E loop

$$V_{BB} = I_B R_{BB} + V_{BE} + I_E R_E$$

 $I_E = 2.09 \text{ mA}$

C-E loop

$$V_{CC} = I_{C}R_{C} + V_{CE} + I_{E}R_{E}$$

$$V_{CE} = 4.8 V$$

This is how all DC circuits are analyzed and designed!