Problem

- Use a voltage divider, $\mathrm{R}_{\mathrm{B} 1}$ and $\mathrm{R}_{\mathrm{B} 2}$ to bias V_{B} to avoid two power supplies.
- Make the current in the voltage divider about 10 times I_{B} to simplify the analysis. Use $V_{B}=3 \mathrm{~V}$ and I $=0.2 \mathrm{~mA}$.
(a) $R_{B 1}$ and $R_{B 2}$ form a voltage divider.

$$
\begin{array}{r}
\text { Assume } I \gg I_{B} I=V_{c c} /\left(R_{B 1}+R_{B 2}\right) \\
.2 m A=9 /\left(R_{B 1}+R_{B 2}\right)
\end{array}
$$

AND

$$
\begin{aligned}
& V_{B}=V_{C C}\left[R_{B 2} /\left(R_{B 1}+R_{B 2}\right)\right] \\
& 3=9\left[R_{B 2} /\left(R_{B 1}+R_{B 2}\right)\right], \text { Solve for } R_{B 1} \text { and } R_{B 2} . \\
& R_{B 1}=30 K \Omega, \text { and } R_{B 2}=15 K \Omega .
\end{aligned}
$$

Problem

Find the operating point

- Use the Thevenin equivalent circuit for the base
- Makes the circuit simpler
- $\mathrm{V}_{\mathrm{BB}}=\mathrm{V}_{\mathrm{B}}=3 \mathrm{~V}$
- $R_{b в}$ is measured with voltage sources grounded
- $R_{B B}=R_{B 1}| | R_{B 2}=30 K \Omega| | 15 K \Omega=.10 K \Omega$

Problem

Write B-E loop and C-E loop

B-E loop
$\mathrm{V}_{\mathrm{BB}}=\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{BB}}+\mathrm{V}_{\mathrm{BE}}+\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}$
$\mathrm{I}_{\mathrm{E}}=2.09 \mathrm{~mA}$
C-E loop
$\mathrm{V}_{\mathrm{Cc}}=\mathrm{I}_{\mathrm{CR}} \mathrm{R}+\mathrm{V}_{\mathrm{CE}}+\mathrm{I}_{\mathrm{E}} \mathrm{Re}_{\mathrm{E}}$
$V_{C E}=4.8 \mathrm{~V}$

This is how all DC circuits are analyzed and designed!

