Example 1

Find Vout/Vin, $(\beta=100)$

DC problem

Short V , determine Ic and V_{ce}
B-E voltage loop
$3=I_{B} R_{b}+V_{b E}$
$\mathrm{I}_{\mathrm{B}}=(3-.7) / \mathrm{R}_{\mathrm{B}}=0.023 \mathrm{~mA}$

C-E voltage loop
$V_{\text {ce }}=10-\operatorname{lcRc}$
$V_{\text {ce }}=10-(2.3)(3)$
$V_{c E}=3.1 \mathrm{~V}$

Q point: $\mathrm{V}_{\mathrm{cE}}=3.1 \mathrm{~V}, \mathrm{Ic}=2.3 \mathrm{~mA}$

Example 2

ac problem

Short DC sources, input and output circuits are separate, only coupled mathematically

```
gm}=\mp@subsup{\textrm{I}}{\textrm{c}}{}/\mp@subsup{\textrm{V}}{\textrm{T}}{}=2.3\textrm{mA}/25\textrm{mV}=92\textrm{mA}/\textrm{V
\mp@subsup{r}{\pi}{}=\mp@subsup{V}{\textrm{T}}{}/\mp@subsup{I}{\textrm{B}}{}=25\textrm{mV}/.023\textrm{mA}=1.1\textrm{K}
Vbe}=\mp@subsup{v}{i}{}[\mp@subsup{r}{\pi}{}/(100K+\mp@subsup{r}{\pi}{})]=0.011\mp@subsup{v}{i}{
Vout = - gm VbeRc
Vout = - 92(0.011vi)3K
Vout/vi= -3.04
```


Example 3

Find g_{m}, r_{π}, and r_{0}, given: $\beta=100, V_{A}=100 \mathrm{~V}, \mathrm{Ic}_{\mathrm{c}}=1 \mathrm{~mA}$

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{m}}=\mathrm{Ic} / \mathrm{V}_{\mathrm{T}}=1 \mathrm{~mA} / 25 \mathrm{mV}=40 \mathrm{~mA} / \mathrm{V} \\
& \mathrm{r}_{\pi}=\mathrm{V}_{\mathrm{T}} / \mathrm{I}_{\mathrm{B}}=25 \mathrm{mV} / .01 \mathrm{~mA}=2.5 \mathrm{~K} \\
& r_{0}=\text { output resistance of transistor } \\
& r_{0}=1 / \text { slope of transistor output characteristics } \\
& r_{0}=\left|\mathrm{V}_{\mathrm{A}}\right| / \mathrm{lc}=100 \mathrm{~K}
\end{aligned}
$$

Summary of transistor analysis

-Transistor circuits are analyzed and designed in terms of DC and ac versions of the same circuit.
-An ac signal is usually superimposed on the DC circuit.
-The location of the operating point (values of Ic_{c} and V_{CE}) of the transistor affects the ac operation of the circuit.
-There are at least two ac parameters determined from DC quantities.

