SIGNALS

Information expressed in different forms

Primary interest of Electronic Engineers

SIGNALS PROCESSING AND ANALYSIS

Processing: Methods and system that modify signals

SIGNALS DESCRIPTION

To analyze signals, we must know how to describe or represent them in the first place.

Detail but not informative

t	<i>x</i> (t)
0	0
1	5
2	8
3	10
4	8
5	5

1. Mathematical expression: $x(t) = A\sin(\omega t + \phi)$

2. Continuous (Analogue)

3. Discrete (Digital)

4. Periodic

 $x(t) = x(t+T_{o})$

Period = T_{o}

5. Aperiodic

6. Even signal

$$x(t) = x(-t)$$

x(t)

7. Odd signal

$$= -x(-t)$$

$$-10$$

$$-5$$

$$-6$$

$$-10$$

$$-10$$

$$-5$$

$$-6$$

$$-10$$

$$-10$$

Exercise: Calculate the integral

8. Causality

Analogue signals: x(t) = 0 for t < 0

Digital signals: x[n] = 0 for n < 0