Combination of Atomic Orbitals

- (i) Combinaltion of s-orbitals: The combination of two similar 1s atomic orbitals gives rise to two molecular orbitals, σ 1s and σ *1s. σ 1s is the bonding molecular orbital, whereas σ *1s is the antibonding molecular orbital. Similarly, the combination of two 2s atomic orbitals will give rise to σ 2s and σ *2s molecular orbitals. These will be of higher energy than σ 1s and σ *1s molecular orbitals as they are formed from atomic orbitals of higher energy.
- (ii) Combination of p-orbitals : The p-orbitals can combine either along the axis to give σ molecular orbitals or perpendicular to the axis to give π -molecular orbitals.

Combination of Atomic Orbitals

- (a) Combination of p_x orbitals: The overlapping of two P_x orbitals along the axis results in the formation of a bonding σ_{px} and antibonding σ^*_{px} molecular orbitals. The orbitals with same sign produce bonding molecular orbitals, whereas the orbitals with unlike signs produce anti bonding molecular orbitals.
- (b) Combination of p_y or p_z orbitals: The overlapping of two p_y or two p_z atomic orbitals takes place perpendicular to the molecular axis and, thus, results in the formation of bonding and antibonding π molecu!ar orbitals.

(1) Hydrogen molecule, H₂: Hydrogen molecule is formed from $1s^1$ atomic orbitals of two atoms. They give rise to two molecular orbitals $\sigma(1s)$ and $\sigma^*(1s)$. Both these electron will be in $\sigma(1s)$ bonding molecular orbital, but with opposite spin. The antibonding molecular orbital remains vacant. The electronic configuration of the molecule is $\sigma(1s^2) \sigma^*(1s^0)$.

Bond order =
$$\frac{1}{2}[N_b - N_a] = \frac{[2-0]}{2} = 1.0$$

ince its B.O. is 1.0, so it exists and is stable.

MO Diagram of H2 Molecule:

(2) Lithium molecule Li₂: Lithium molecule is formed by the overlap between two lithium atoms each having the electronic configuration $1s^22s^1$. So, we have total of six electrons which have to be accomodated in 4 molecular orbitals, viz., $\sigma 1s$, $\sigma^* 1s$, $\sigma 2s$ and $\sigma^* 2s$.

Hence, molecular orbital electronic configuration of Li₂ molecule

 $= \sigma 1 s^2 \sigma^* 1 s^2 \sigma 2 s^2 = KK \sigma 2 s^2$

Since, the inner shell of filled σ1s and σ *1s molecular orbitals do not contribute to the bonding and is sometimes written as KK which means K-shell is completely filled.

Bond order = 1/2 (Nb - Na) = 1/2(4 - 2) = 1/2(2 - 0) = 1

MO diagram of Li2 Molecule

(3) Nitrogen Molecule, N₂: A Nitrogen atom has 2+5=7 electrons. Thus, the N₂ molecule contains 14 electrons. These are arranged as

$$\sigma_{1s^{2}}, \sigma_{*1s^{2}}, \sigma_{2s^{2}}, \sigma_{*2s^{2}}, \begin{cases} \pi 2p_{y}^{2} \\ \pi 2p_{z}^{2} \end{cases}, \sigma_{2p_{x}^{2}} \end{cases}$$

There are eight and two electrons in the bonding molecular orbital respectively.

Bond order of $N_2 = \frac{1}{2} (8-2) = 3$

The N2 molecule is diamagnetic as it has no unpaired electron.

Oxygen molecule, O₂: Each oxygen atom has 2+6=8 electrons. Thus O2 molecule contains a total of 16 electrons. These are arranged as

$$\sigma_{1s}^{2}, \sigma_{*1s}^{2}, \sigma_{2s}^{2}, \sigma_{*2s}^{2}, \sigma_{2p_{x}}^{2}, \begin{cases} \pi_{2p_{y}}^{2}, \\ \pi_{2p_{z}}^{2}, \end{cases} \begin{cases} \pi_{*2p_{y}}^{1}, \\ \pi_{*2p_{z}}^{1} \end{cases}$$

The presence of unpaired electrons in $\pi^* 2p_y$ and $\pi^* 2p_z$ give rise to paramagnetism.

B.O. of O2 = ½ (8-4) = 2

The electronic configuration, bond order and magenatic character of O_2^- , O_2^+ and O_2^{2-}

Species	Electronic configuration	Bond order	Magnetic behaviour
02	$kk \sigma 2s^2 \sigma * 2s^2 \sigma 2p_x^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix}, \begin{bmatrix} \pi * 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix}, \begin{bmatrix} \pi * 2p_y^2 \\ \pi * 2p_z^2 \end{bmatrix}, \begin{bmatrix} \pi + 2p_y^2 \\ \pi + 2p_z^2 \end{bmatrix}, \begin{bmatrix} \pi + 2p_z \\ \pi + 2p_z^2 \end{bmatrix}, \begin{bmatrix} \pi + 2p_z \\ \pi + 2p_z \end{bmatrix}, \begin{bmatrix} \pi + 2p_$	$\begin{bmatrix} p_y^1 \\ p_y^0 \\ p_z^0 \end{bmatrix} = 2.5$	Paramagnetic
0 <u>-</u>	$kk\sigma 2s^{2}\sigma * 2s^{2}\sigma 2p_{x}^{2} \begin{bmatrix} \pi 2p_{y}^{2} \\ \pi 2p_{z}^{2} \end{bmatrix}, \begin{bmatrix} \pi * 2p_{y}^{2} \\ \pi 2p_{z}^{2} \end{bmatrix}, \begin{bmatrix} \pi * 2p_{y}^{2} \\ \pi 2p_{z}^{2} \end{bmatrix}, \begin{bmatrix} \pi * 2p_{y}^{2} \\ \pi 2p_{z}^{2} \end{bmatrix}, \begin{bmatrix} \pi + 2p_{z}^{2} \\$	p_y^2 p_z^1 $\frac{(8-5)}{2} = 1.5$	Paramagnetic
02 ²⁻	$kk\sigma 2s^{2}\sigma * 2s^{2}\sigma 2p_{x}^{2} \begin{bmatrix} \pi 2p_{y}^{2} \\ \pi 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi * 2p_{y}^{2} \\ \pi * 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi * 2p_{y}^{2} \\ \pi * 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi * 2p_{y}^{2} \\ \pi * 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{y}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{y}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{y}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{y}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{y}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{y}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{y}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{y}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{y}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{y}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{y}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{y}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{y}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix} \begin{bmatrix} \pi + 2p_{z}^{2} \\ \pi + 2p_{z}^{2} \end{bmatrix}$	$\frac{p_y^2}{p_z^2} = 1$	Diamagnetic