
Total Derivative 



Graphing the Derivative 

• When graphing the derivative, you are 
graphing the slope of the original function. 



Graphing the Derivative 

• When x < -2, the slope is 1 

• When -2 < x < 0, the slope is -1 

• At x = -2 and x = 0 the derivative does not exist— 
why? 



Graphing the Derivative 

• For x > 0, the derivative is positive—estimated to be a slope of  
1 at x = 1 

• As x approaches 0 from the right, the derivative becomes  
larger 

• As x approaches infinity, the derivative approaches 0. 



Graphing 

• Which is the f(x) and which is f’(x)? 

• The derivative is 0 (crosses the x-axis)  
wherever there is a horizontal tangent 

• Y1 = f(x) 

• Y2 = f’(x) 



Calculating the Derivative 

Notation 



Constant Rule 

If f(x) = 4, then f’(x) = 0  

If f(x) = , then f’(x) = 0 



Power Rule 



Power Rule – Examples 

• If f(x) = x6, find Dxy 

• Dxy = 6x6-1 = 6x5 

• If 

dx 

f(x)  x, find dy 

dx 

dy 
 1x0   1 

• If y  
1 find dy 

x3 dx 

1 must be rewritten 
x3 
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x3 

dy 
 3x4   
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Power Rule Examples 

• Example 1: Given f(x) = 3x2, find f’(x). 

• f’(x) = 6x 

• Example 2: Find the first derivative given f(x) = 8x. 

• 8x0 = 8 



Sum or Difference Rule 



Sum/Difference Examples 

• The Sum/Difference rule can be used on each  
term in a polynomial to find the first  
derivative. 

• Find f’(x), given f(x) = 5x4 – 2x3  – 5x2  + 8x + 11 

• f’(x) = 20x3  – 6x2 – 10x + 8 

• The derivative of a constant is 0 because 11 is  
the same as 11x0, which is (0)11x-1 



Sum/Difference Examples 

• Find p’(t) given 

• Rewrite p(t): 

p(t)  12t4  6 t  
5 

t 
1 

p(t)  12t4  6t2  5t1 

t t2 
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p'(t)  48t3  3t 2  5t2 

p'(t)  48t3   
3 
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Applications 

• Marginal variables can be cost, revenue,  
and/or profit. Marginal refers to rates of  
change. 

• Since the derivative gives the rate of change of 
a function, we find the derivative. 



Application Example 

• The total cost in hundreds of dollars to  
produce x thousand barrels of a beverage is  
given by 

• C(x) = 4x2 + 100x + 500 

• Find the marginal cost for x = 5 

 
• C’(x) = 8x + 100; C’(5) = 140 



Example Continued 

• After 5,000 barrels have been produced, the  
cost to produce 1,000 more barrels will be  
approximately $14,000 

• The actual cost will be C(6) – C(5): 144 or 
$14,400 



Product Rule 



Product Rule - Example 

• Let f(x) = (2x + 3)(3x2). Find f’(x) 

• =(2x + 3)(6x) + (3x2)(2) 

• =12x2  + 18x + 6x2 = 18x2  + 18x 



Power Rule 

• Find f’(x) given that f(x)   x  3x2   5x 
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Quotient Rule 



Quotient Rule Example 

• Find f’(x) 
if 

f(x)  
2x  1 
4x  3 

4x  3(2)  2x  1 4 
 

4x  32 

10 
 

4x  32 



Product & Quotient Rules 

• Find 
3  4x 5x  1 

D 
7x  9 

x  
 

 
 

7x  9Dx 3  4x 5x  1  3  4x 5x  1Dx 7x  9 

(7x  9)2 

7x  9 3  4x(5)  (5x  1)(4)  (3  11x  20x2)(7)  

(7x  9)2 

140x2  360x  120  

(7x  9)2 
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Definition of the partial derivative 

 the partial derivative of f(x,y) with respect to x and y are 

Partial differentiation 
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variables  xi ,  i  1,2,3,......, n, for  a given  xi   xi ( x1 ) 

the  total derivative  of f ( x1 , x2 ,...xi ...xn ) with  respect to  x1  is 
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for  n - variable function 
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, given 
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Partial differentiation 

Ex: Find the total derivative off ( x , y)   x 2    3xy  with respect txo 
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The chain rule 
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Partial differentiation 

Change of variables 

f  f ( x1 , x2 ,...., xn ) and xi   xi (u1 , u2 ,..., um ) 

Ex: Polar coordinates ρ and ψ, Cartesian coordinates x and y,  x=ρcosφ, 

into one in ρ and φ transform  
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