Inverse of a Matrix

The inverse is Defined as $\quad A A^{-1}=A^{-1} A=I$

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

We will find out how to calculate the inverse for 2×2 matrix

But first why is it important?

Because it will allow us to solve equations of the form

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

We will only consider 2×2 Matrix systems
That means simultaneous equations

Because if we can express a system of equations in the form

$$
A x=b
$$

Then we can multiply both sides by the inverse matrix

$$
A^{-1} A x=A^{-1} b
$$

And we can then know the values of X because

$$
A^{-1} A=I
$$

$$
x=A^{-1} b
$$

$$
\left.\begin{array}{l}
\left(\begin{array}{rrr}
4 & -3 & 2 \\
-6 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
2 \\
-1 \\
6
\end{array}\right)=\binom{8+3+12}{-12+0+6}=\binom{23}{-6} \\
\left(\begin{array}{cc}
6 & 3 \\
1 & 2 \\
5 & 7
\end{array}\right)\left(\begin{array}{c}
2 \\
12+ \\
2+6 \\
10+21
\end{array}\right)
\end{array}\right)=\left(\begin{array}{l}
21 \\
8 \\
31
\end{array}\right)
$$

* Dimensions and compatibility given by the domino rule

To multiply the columns of the first must be equal to the rows of the second

2×1

The dimensions of the result are given by the 2 outer numbers

Note matrix multiplication is not commutative.
If A is a 3×1 and B is a 1×3 then $A B$ is $3 \times 3 B A$ is 1×1

* This can only be done with SQUARE matrices
* By hand we will only do this for a 2×2 matrix
* Inverses of larger square matrices can be calculated but can be quite time expensive for large matrices, computers are generally used
$\left({ }_{(1}^{4} E x_{3}^{8}\right) \mid A=$

$$
\text { then } A^{-1}=\left(\begin{array}{cc}
0.75 & -2 \\
-0.25 & 1
\end{array}\right) \quad \text { as } A \times A^{-1}=I
$$

$$
\left(\begin{array}{ll}
4 & 8 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
0.75 & -2 \\
-0.25 & 1
\end{array}\right)=\left(\begin{array}{cc}
3-2 & -8+8 \\
0.75-0.75 & -2+3
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Step-1 First find what is called the Determinant
This is calculated as ad-bc
Step-2 Then swap the elements in the leading diagonal $\left[\begin{array}{ll}d & b \\ c & a\end{array}\right]$
Step-3 Then negate the other elements

$$
\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Step-4 Then multiply the Matrix by 1 /determinant

$$
\left.\frac{1}{b \mid a d}\right\rfloor\left[\begin{array}{l}
d- \\
c b\lfloor-c
\end{array}\right.
$$

Step 1 - Calc Determinant

$$
A=\left(\begin{array}{ll}
4 & 8 \\
1 & 3
\end{array}\right) \quad \text { Determinant }(\mathrm{ad}-\mathrm{cb})=4 \times 3-8 \times 1=4
$$

Step 2 - Swap Elements on leading diagonal

Step 3-negate the other elements

Step 4 - multiply by 1 determinant

$$
\begin{aligned}
& \text { step2 }\left(\begin{array}{ll}
3 & 8 \\
1 & 4
\end{array}\right) \\
& \text { step3 }\left(\begin{array}{cr}
3 & -8 \\
-1 & 4
\end{array}\right) \\
& \text { step4 } \frac{1}{4}\left(\begin{array}{rr}
3 & -8 \\
-1 & 4
\end{array}\right)
\end{aligned}
$$

$$
A^{-1}=\left[\begin{array}{rr}
0.75 & -2 \\
-0.25 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { check } \\
& \begin{aligned}
A A^{-1}= & {\left[\begin{array}{ll}
4 & 8 \\
& 3
\end{array}\right]\left[\begin{array}{rr}
0.75 & -2 \\
-0.25 & 1
\end{array}\right] } \\
& 1 \\
& =\left[\begin{array}{ll}
3-2 & -8+8 \\
0.75-0.75 & -2+3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{A}=\left(\begin{array}{ll}
2 & 6 \\
1 & 5
\end{array}\right) & \mathrm{A}^{-1}=\frac{1}{4}\left(\begin{array}{cc}
5 & -6 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
1.25 & -1.5 \\
-0.25 & 0.5
\end{array}\right) \\
\mathrm{B}=\left(\begin{array}{ll}
-5 & 20 \\
-1 & 2
\end{array}\right) & B^{-1}=\frac{1}{10}\left(\begin{array}{cc}
2 & -20 \\
1 & -5
\end{array}\right)=\left(\begin{array}{cc}
0.2 & -2 \\
0.1 & -0.5
\end{array}\right) \\
\mathrm{C}=\left(\begin{array}{ll}
l^{2} & 2 \\
0 & -1
\end{array}\right) & \mathrm{C}^{-1}=\frac{1}{-2}\left(\begin{array}{cc}
-1 & -2 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
0.5 & 1 \\
0 & -1
\end{array}\right)
\end{array}
$$

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
2 & 4 \\
1 & 3
\end{array}\right) \\
& B=\left(\begin{array}{cc}
5 & 10 \\
-1 & 2
\end{array}\right) \\
& C=\left(\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right) \\
& D=\left(\begin{array}{cc}
8 & 2 \\
-1 & 0
\end{array}\right) \\
& E=\left(\begin{array}{cc}
2 & -8 \\
-1 & 4
\end{array}\right) \\
& F=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}^{-1}=\frac{1}{2}\left(\begin{array}{cc}
3 & -4 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
1.5 & -2 \\
-0.5 & 1
\end{array}\right) \\
& \mathrm{B}^{-1}=\frac{1}{20}\left(\begin{array}{cc}
2 & -10 \\
1 & 5
\end{array}\right)=\left(\begin{array}{cc}
0.1 & -0.5 \\
0.05 & 0.25
\end{array}\right) \\
& \mathrm{C}^{-1}=\frac{1}{-1}\left(\begin{array}{cc}
1 & -2 \\
-2 & 3
\end{array}\right)=\left(\begin{array}{cc}
-1 & 2 \\
2 & -3
\end{array}\right) \\
& \mathrm{D}^{-1}=\frac{1}{2}\left(\begin{array}{cc}
0 & -2 \\
1 & 8
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
0.5 & 4
\end{array}\right)
\end{aligned}
$$

$$
E^{-1} \text { cannot be found as } \operatorname{det}=2 \times 4-(-1 \times-8)=8-8=0
$$

$$
\mathrm{F}^{-1}=\frac{1}{1}\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \text { self inverting }
$$

* Because matrices are clever storage systems for numbers there are a large and diverse number of ways we can apply them.
* Matrices are used in to solve equations on computers
- solving equations
* They are used in computer games and multi-media devices to move and change objects in space
- transformation geometry
* We only consider solving equations on Maths1 with using 2×2 matrices
* We can use our 2×2 matrices to express 2 simultaneous equations (2 equations about the same 2 variables)
* First we must put them in the correct format * for the variables $x \& y$ the format should be $a x+b y=m$ $c x+d y=n \quad\{$ where $a, b, c, d, m \& n$ are constants $\}$

Example
Peter and Jane spend $£ 240$ altogether and Peter spends 3 times as much as Jane.
let p : what Peter spends and j : what Jane spends

We can use our 2×2 matrices to express these simultaneous equations

$$
\left.\begin{array}{ll}
x+y & =240 \\
x-3 y & =0
\end{array}\right\} \quad \text { Becomes in matrix form }
$$

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & -3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{240}{0} \quad \text { Format is } A x=B
$$

To solve this using the matrix we must get rid of it by using its inverse!
First find the inverse $\left.\left(\begin{array}{cc}1 & 1 \\ 1 & -3\end{array}\right)^{-1}=\frac{1}{-4}\left(\begin{array}{cc}-3 & -1 \\ -1 & 1\end{array}\right)\right)=\left(\begin{array}{cc}0.75 & 0.25 \\ 0.25 & -0.25\end{array}\right)$
now use it on both sides of the equation

$$
\begin{gathered}
\left.\left(\begin{array}{cc}
0.75 & 0.25 \\
0.25 & -0.25
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -3
\end{array}\right)\binom{x_{1}}{x_{2}} \right\rvert\,=\left(\begin{array}{cc}
0.75 & 0.25 \\
0.25 & -0.25
\end{array}\right)\binom{240}{0} \\
\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x 1}{x_{2}}=\left(\begin{array}{cc}
0.75 & 0.25 \\
0.25 & -0.25
\end{array}\right)\binom{240}{0} \\
\left.\binom{x_{1}}{x_{2}} \right\rvert\,=\binom{180}{60}
\end{gathered}
$$

So Answer is $p=180 j=60$

1. Format the simultaneous equations for variable $x \& y$

$$
\begin{aligned}
& a x+b y=m \\
& c x+d y=n
\end{aligned}
$$

2. Rewrite them in matrix form

$$
\left(\begin{array}{cc}
a & a \\
c & d \\
c & d
\end{array}\right)=\left(\begin{array}{l}
x
\end{array}\right)=\left(\begin{array}{l}
m \\
n \\
n
\end{array}\right)
$$

3. Find the inverse of the 2×2 matrix $\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right)^{-1}=\frac{1}{\mathrm{ad}-\mathrm{bc}}\left(\begin{array}{cc}\mathrm{d} & -\mathrm{b} \\ -\mathrm{c} & \mathrm{a}\end{array}\right)$
4. Solve for the variables x, y by multiplying the right hand side of the equation by the inverse

$$
\binom{\mathrm{x}}{\mathrm{y}}=\frac{1}{\mathrm{ad}-\mathrm{bc}}\left(\begin{array}{cc}
\mathrm{d} & -\mathrm{b} \\
-\mathrm{c} & \mathrm{a}
\end{array}\right)\binom{\mathrm{m}}{\mathrm{n}}
$$

$$
\begin{aligned}
& \begin{array}{l}
3 x+4 y=5 \\
5 x=7-6 y
\end{array} \quad\left(\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right)\binom{x}{y}=\binom{5}{7} \quad \text { Answer } x=-1 y=2 \\
& 5 x=7-6 y \\
& \binom{\mathrm{x}}{\mathrm{y}}\left|=\frac{1}{-2}\left(\begin{array}{cc}
6 & -4 \\
-5 & 3
\end{array}\right)\binom{5}{7}\right|=\frac{1}{-2}\binom{30-28}{-25+21}\left|=\frac{1}{-2}\binom{2}{-4}\right|=\binom{-1}{2} \\
& \left.x+7 y=1.24 \quad\left(\begin{array}{cc}
1 & 7 \\
-1 & 3
\end{array}\right)\binom{x}{y} \right\rvert\,=\binom{1.24}{0.76} \quad \text { Answer } x=-0.16 y=0.2 \\
& \left.3 y-x=0.76\binom{x}{y}\left|=\frac{1}{10}\left(\begin{array}{cc}
3 & -7 \\
1 & 1
\end{array}\right)\binom{1.24}{0.76}\right|=\frac{1}{10}\binom{3.72-5.32}{1.24+0.76} \right\rvert\,=\frac{1}{10}\binom{-1.6}{2}=\binom{-0.16}{0.2} \\
& \left.\left(\begin{array}{cc}
8 & -3 \\
1 & 1
\end{array}\right)\binom{x}{y} \right\rvert\,=\binom{-1}{-7} \quad \text { Answer } x=-2 y=-5 \\
& \binom{x}{y} \left\lvert\,=\frac{1}{11}\left(\begin{array}{cc}
1 & 3 \\
-1 & 8
\end{array}\right)\binom{-1}{-7}=\frac{1}{11}\binom{-1-21}{1-56}=\frac{1}{11}\binom{-22}{-55}=\binom{-2}{-5}\right.
\end{aligned}
$$

