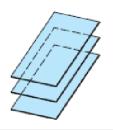
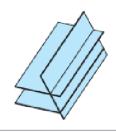
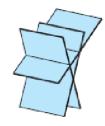


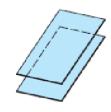
Linear Algebra

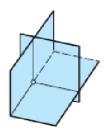


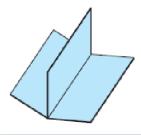


▶ Figure 1.1.1

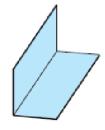

Linear Systems in Three Unknowns


No solutions (three parallel planes; no common intersection)


No solutions (two parallel planes; no common intersection)


No solutions (no common intersection)

No solutions (two coincident planes parallel to the third; no common intersection)


One solution (intersection is a point)

Infinitely many solutions (intersection is a line)

Infinitely many solutions (planes are all coincident; intersection is a plane)

Infinitely many solutions (two coincident planes; intersection is a line)

Elementary Row Operations

- I. Multiply a row through by a nonzero constant.
- 2. Interchange two rows.
- 3. Add a constant times one row to another

$$\begin{bmatrix} 1 & 4 & -3 & 7 \\ 0 & 1 & 6 & 2 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$

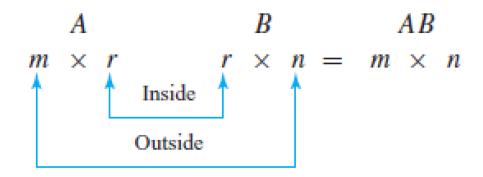
Row Echelon Form

$$\begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Reduced Row Echelon Form: Achieved by Gauss Jordan Elimination

Homogeneous Systems All equations are set = 0

- Theorem 1.2.1 If a homogeneous linear system has n unknowns, and if the reduced row echelon form of its augmented matrix has r nonzero rows, then the system has n r free variables
- Theorem 1.2.2 A homogeneous linear system with more unknowns than equations has infinitely many solutions


- <u>Definition I</u> A matrix is a rectangular array of numbers. The numbers in the array are called the entries of the matrix.
- The size of a matrix M is written in terms of the number of its rows x the number of its columns. A 2x3 matrix has 2 rows and 3 columns

- A + B: add the corresponding entries of A and B
- A B: subtract the corresponding entries of B from those of A
- Matrices A and B must be of the same size to be added or subtracted
- cA (scalar multiplication): multiply each entry of A by the constant c

Multiplication of Matrices

DEFINITION 5 If A is an $m \times r$ matrix and B is an $r \times n$ matrix, then the *product* AB is the $m \times n$ matrix whose entries are determined as follows: To find the entry in row i and column j of AB, single out row i from the matrix A and column j from the matrix B. Multiply the corresponding entries from the row and column together, and then add up the resulting products.

Transpose of a Matrix A^T

DEFINITION 7 If A is any $m \times n$ matrix, then the *transpose of A*, denoted by A^T , is defined to be the $n \times m$ matrix that results by interchanging the rows and columns of A; that is, the first column of A^T is the first row of A, the second column of A^T is the second row of A, and so forth.

$$A = \begin{bmatrix} 1 & -2 & 4 \\ 3 & 7 & 0 \\ -5 & 8 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 4 \\ 3 & 7 & 0 \\ -5 & 8 & 6 \end{bmatrix} \rightarrow A^{T} = \begin{bmatrix} 1 & 3 & -5 \\ -2 & 7 & 8 \\ 4 & 0 & 6 \end{bmatrix}$$

Interchange entries that are symmetrically positioned about the main diagonal.

Transpose Matrix Properties

THEOREM 1.4.8 *If the sizes of the matrices are such that the stated operations can be performed, then:*

$$(a) \quad (A^T)^T = A$$

$$(b) \quad (A+B)^T = A^T + B^T$$

$$(c) \quad (A-B)^T = A^T - B^T$$

$$(d) \quad (kA)^T = kA^T$$

$$(e) \quad (AB)^T = B^T A^T$$

The transpose of a product of any number of matrices is the product of the transposes in the reverse order.

Trace of a matrix

DEFINITION 8 If A is a square matrix, then the trace of A, denoted by tr(A), is defined to be the sum of the entries on the main diagonal of A. The trace of A is undefined if A is not a square matrix.

EXAMPLE 11 Trace of a Matrix

The following are examples of matrices and their traces.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 2 & 7 & 0 \\ 3 & 5 & -8 & 4 \\ 1 & 2 & 7 & -3 \\ 4 & -2 & 1 & 0 \end{bmatrix}$$

$$tr(A) = a_{11} + a_{22} + a_{33}$$

$$tr(A) = a_{11} + a_{22} + a_{33}$$
 $tr(B) = -1 + 5 + 7 + 0 = 11$

Algebraic Properties of Matrices

THEOREM 1.4.1 Properties of Matrix Arithmetic

Assuming that the sizes of the matrices are such that the indicated operations can be performed, the following rules of matrix arithmetic are valid.

$$(a) \quad A + B = B + A$$

(Commutative law for addition)

(b)
$$A + (B + C) = (A + B) + C$$
 (Associative law for addition)

(c)
$$A(BC) = (AB)C$$

(Associative law for multiplication)

(d)
$$A(B+C) = AB + AC$$
 (Left distributive law)

(e)
$$(B+C)A = BA + CA$$

(Right distributive law)

$$(f)$$
 $A(B-C) = AB - AC$

$$(g)$$
 $(B-C)A = BA - CA$

(h)
$$a(B+C) = aB + aC$$

(i)
$$a(B-C) = aB - aC$$

$$(j)$$
 $(a+b)C = aC + bC$

$$(k)$$
 $(a-b)C = aC - bC$

(l)
$$a(bC) = (ab)C$$

$$(m)$$
 $a(BC) = (aB)C = B(aC)$

The identity matrix and Inverse Matrices

A square matrix with 1's on the main diagonal and zeros elsewhere is called an *identity* matrix. Some examples are

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

DEFINITION 1 If A is a square matrix, and if a matrix B of the same size can be found such that AB = BA = I, then A is said to be *invertible* (or *nonsingular*) and B is called an *inverse* of A. If no such matrix B can be found, then A is said to be *singular*.

$$AA^{-1} = I$$
 and $A^{-1}A = I$

Inverse of a 2x2 matrix

THEOREM 1.4.5 The matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible if and only if $ad - bc \neq 0$, in which case the inverse is given by the formula

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \tag{2}$$

More on Invertible Matrices

THEOREM 1.4.6 If A and B are invertible matrices with the same size, then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

THEOREM 1.4.7 *If A is invertible and n is a nonnegative integer, then*:

- (a) A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- (b) A^n is invertible and $(A^n)^{-1} = A^{-n} = (A^{-1})^n$.
- (c) kA is invertible for any nonzero scalar k, and $(kA)^{-1} = k^{-1}A^{-1}$.

THEOREM 1.4.9 If A is an invertible matrix, then A^T is also invertible and

$$(A^T)^{-1} = (A^{-1})^T$$

Using Row Operations to find A-1

Begin with:

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{bmatrix}$$

Use successive row operations to produce:

$$\begin{bmatrix} 1 & 0 & 0 & -40 & 16 & 9 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{bmatrix}$$

Thus,

$$A^{-1} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$

Linear Systems and Invertible Matrices

► EXAMPLE 1 Solution of a Linear System Using A-1

Consider the system of linear equations

$$x_1 + 2x_2 + 3x_3 = 5$$

 $2x_1 + 5x_2 + 3x_3 = 3$
 $x_1 + 8x_3 = 17$

In matrix form this system can be written as Ax = b, where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 5 \\ 3 \\ 17 \end{bmatrix}$$

In Example 4 of the preceding section, we showed that A is invertible and

$$A^{-1} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$

By Theorem 1.6.2, the solution of the system is

$$\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 17 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

or
$$x_1 = 1$$
, $x_2 = -1$, $x_3 = 2$.

Diagonal, Triangular and Symmetric Matrices

A general $n \times n$ diagonal matrix D can be written as

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix} \qquad \begin{bmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$
A general 4×4 upper triangular matrix
$$A \text{ general } 4 \times 4 \text{ lower triangular matrix}$$

DEFINITION 1 A square matrix A is said to be symmetric if $A = A^T$.