Characteristic Equatuion Eigenvalues and Eigenvectors

Definitions

Definition : A nonzero vector \mathbf{x} is an eigenvector (or characteristic vector) of a square matrix \mathbf{A} if there exists a scalar λ such that $A x=\lambda x$. Then $\boldsymbol{\lambda}$ is an eigenvalue (or characteristic value) of \mathbf{A}.

Note: The zero vector can not be an eigenvector even though A0 $=\lambda 0$. But λ = 0 can be an eigenvalue.

Example:

$$
\begin{aligned}
& \text { Show } x=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \text { is an eigenvector for } A=\left[\begin{array}{ll}
2 & -4 \\
3 & -6
\end{array}\right] \\
& \text { Solution : } A x=\left[\begin{array}{ll}
2 & -4 \\
3 & -6
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \text { But for } \lambda=0, \quad \lambda x=0\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Thus, is an eigenvector of A, and $\lambda=0$ is an eigenvalue.

Geometric interpretation of Eigenvalues and Eigenvectors

An $\mathrm{n} \times \mathrm{n}$ matrix \mathbf{A} multiplied by $\mathrm{n} \times 1$ vector \mathbf{x} results in another $\mathrm{n} \times 1$ vector $\mathbf{y}=\mathbf{A x}$. Thus \mathbf{A} can be considered as a transformation matrix.

In general, a matrix acts on a vector by changing both its magnitude and its direction. However, a matrix may act on certain vectors by changing only their magnitude, and leaving their direction unchanged (or possibly reversing it). These vectors are the eigenvectors of the matrix.

A matrix acts on an eigenvector by multiplying its magnitude by a factor, which is positive if its direction is unchanged and negative if its direction is reversed. This factor is the eigenvalue associated with that eigenvector.

Eigenvalues

Let x be an eigenvector of the matrix A. Then there must exist an eigenvalue λ such that $A x=\lambda x \quad$ or, equivalently,

$$
\begin{aligned}
& A x-\lambda x=0 \quad \text { or } \\
& (A-\lambda I) x=0
\end{aligned}
$$

If we define a new matrix $B=A-\lambda I$, then

$$
B x=0
$$

If B has an inverse then $x=B^{-10}=0$. But an eigenvector cannot be zero.

Thus, it follows that x will be an eigenvector of A if and only if B does not have an inverse, or equivalently $\operatorname{det}(B)=0$, or

$$
\operatorname{det}(A-\lambda I)=0
$$

This is called the characteristic equation of A. Its roots determine the eigonalues of \mathbf{A}.

Eigenvalues: examples

Example 1: Find the eigenvalues $\mathcal{Q I}^{\prime}=\left[\begin{array}{cc}2 & -12 \\ 1 & -5\end{array}\right]$

$$
\begin{aligned}
|\lambda I-A| & =\left|\begin{array}{cc}
\lambda-2 & 12 \\
-1 & \lambda+5
\end{array}\right|=(\lambda-2)(\lambda+5)+12 \\
& =\lambda^{2}+3 \lambda+2=(\lambda+1)(\lambda+2)
\end{aligned}
$$

two eigenvalues: $-1,-2$
Note: The roots of the characteristic equation can be repeated. That is, $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{k}$. If that happens, the eigenvalue is said to be of multiplicity k.
Example 2: Find the eigenvalues of $\left.\qquad \begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
$|\lambda I-A|=\left|\begin{array}{ccc}\lambda-2 & -1 & 0 \\ 0 & \lambda-2 & 0 \\ \text { multipin } & 03 & 0\end{array} \lambda-2\right|=(\lambda-2)^{3}=0$ is an eigenvector of

Eigenvectors

To each distinct eigenvalue of a matrix A there will correspond at least one eigenvector which can be found by solving the appropriate set of homogenous equations. If $\boldsymbol{\lambda}_{\mathbf{i}}$ is an eigenvalue then the corresponding eigenvector $\mathbf{x}_{\mathbf{i}}$ is the solution of $\left(A-\lambda_{i} l\right) x_{i}=0$

Example 1 (cont.):

$$
\begin{gathered}
\lambda=-1:(-1) I-A=\left[\begin{array}{ll}
-3 & 12 \\
-1 & 4
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
1 & -4 \\
0 & 0
\end{array}\right] \\
x_{1}-4 x_{2}=0 \Rightarrow x_{1}=4 t, x_{2}=t \\
\mathbf{x}_{1}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=t\left[\begin{array}{l}
4 \\
1
\end{array}\right], t \neq 0 \\
\lambda=-2:(-2) I-A=\left[\begin{array}{ll}
-4 & 12 \\
-1 & 3
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right] \\
\mathbf{x}_{2}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=s\left[\begin{array}{l}
3 \\
1
\end{array}\right], s \neq 0
\end{gathered}
$$

Eigenvectors

Example 2 (cont.): Find the eigenvectors $A O=\left\{\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0\end{array}\right]$
Recall that $\lambda=2$ is an eigenvector of multiplicity 3.

Solve the homogeneous lin ear system represented

$$
\begin{aligned}
& (2 I-A) \mathbf{x}= \\
& x_{1}=s, x_{3}=t
\end{aligned}
$$

Let

Properties of Eigenvalues and Eigenvectors

Definition: The trace of a matrix A, designated by $\operatorname{tr}(A)$, is the sum of the elements on the main diagonal.

Property 1: The sum of the eigenvalues of a matrix equals the trace of the matrix.

Property 2: A matrix is singular if and only if it has a zero eigenvalue.

Property 3: The eigenvalues of an upper (or lower) triangular matrix are the elements on the main diagonal.

Properties of Eigenvalues and Eigenvectors

Property 5: If $\boldsymbol{\lambda}$ is an eigenvalue of \mathbf{A} then $\mathbf{k} \boldsymbol{\lambda}$ is an eigenvalue of kA where k is any arbitrary scalar.

Property 6: If $\boldsymbol{\lambda}$ is an eigenvalue of \mathbf{A} then λ^{k} is an eigenvalue of A^{k} for any positive integer k.

Property 8: If $\boldsymbol{\lambda}$ is an eigenvalue of \boldsymbol{A} then $\boldsymbol{\lambda}$ is an eigenvalue of \boldsymbol{A}^{\top}.

Property 9: The product of the eigenvalues (counting multiplicity) of a matrix equals the determinant of the matrix.

Linearly independent eigenvectors

Theorem: Eigenvectors corresponding to distinct (that is, different) eigenvalues are linearly independent.

Theorem: If $\boldsymbol{\lambda}$ is an eigenvalue of multiplicity k of an $\mathrm{n} \times \mathrm{n}$ matrix A then the number of linearly independent eigenvectors of \mathbf{A} associated with λ is given by $m=n-r(A-\lambda I)$. Furthermore, $1 \leq m$ $\leq k$.

Example 2 (cont.): The eigenvectors of $\lambda=2$ are of the form

$$
\left.\left.\left.\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
s \\
0
\end{array}\right]=s \right\rvert\, \begin{array}{c}
1 \\
0
\end{array}\right]+t \left\lvert\, \begin{array}{c}
0 \\
0
\end{array}\right.\right], \quad s \text { and } t \text { not both zero. }
$$

$\lambda=2$ has two linearly independent eigenvectors

