Volume Cartesian and Polar Coordinates

Cartesian Coordinate

Example

Find the average of $f(x, y, z)=x y z$ in the first octant bounded by the planes $x=1, y=2, z=3$.

Solution: The volume of the rectangular integration region is

$$
V=\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} d z d y d x \quad \Rightarrow \quad v=6
$$

The average of function f is:

$$
\begin{gathered}
\bar{f}=\frac{1}{6} \int_{0}^{1} \int_{0}^{2} \int_{0}^{3} x y z d z d y d x=\frac{1}{6}\left[\int_{0}^{1} x d x\right]\left[\int_{0}^{2} y d y\right]\left[\int_{0}^{3} z d z\right] \\
\bar{f}=\frac{1}{6}\left(\left.\frac{x^{2}}{2}\right|_{0} ^{1}\right)\left(\left.\frac{y^{2}}{2}\right|_{0} ^{2}\right)\left(\left.\frac{z^{2}}{2}\right|_{0} ^{3}\right)=\frac{1}{6}\left(\frac{1}{2}\right)\left(\frac{4}{2}\right)\left(\frac{9}{2}\right)
\end{gathered}
$$

We conclude: $\bar{f}=1 / 4$.

Example

Compute the triple integral of $f(x, y, z)=z$ in the region bounded by $x \geqslant 0, z \geqslant 0, y \geqslant 3 x$, and $9 \geqslant y^{2}+z^{2}$.

Solution: Recall:

The result is: $I=\int_{0}^{1} \int_{3 x}^{3} \int_{0}^{\sqrt{9-y^{2}}} z d z d y d x$.

Polar Coordinates

EXAMPLE Find the volume under $z=\sqrt{4-r^{2}}$ above the region enclosed by the curve $r=2 \cos \theta,-\pi / 2 \leq \theta \leq \pi / 2$; see figure 15.2.2. The region is described in polar coordinates by the inequalities $-\pi / 2 \leq \theta \leq \pi / 2$ and $0 \leq r \leq 2 \cos \theta$, so the double integral is

$$
\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \theta} \sqrt{4-r^{2}} r d r d \theta=2 \int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} \sqrt{4-r^{2}} r d r d \theta
$$

We can rewrite the integral as shown because of the symmetry of the volume; this avoids a complication during the evaluation. Proceeding:

$$
\begin{aligned}
2 \int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} \sqrt{4-r^{2}} r d r d \theta & =2 \int_{0}^{\pi / 2}-\left.\frac{1}{3}\left(4-r^{2}\right)^{3 / 2}\right|_{0} ^{2 \cos \theta} d \theta \\
& =2 \int_{0}^{\pi / 2}-\frac{8}{3} \sin ^{3} \theta+\frac{8}{3} d \theta \\
& =\left.2\left(-\frac{8}{3} \frac{\cos ^{3} \theta}{3}-\cos \theta+\frac{8}{3} \theta\right)\right|_{0} ^{\pi / 2} \\
& =\frac{8}{3} \pi-\frac{32}{9}
\end{aligned}
$$

Example

Find the volume of a cone of base radius R and height h.
Solution: $R=\left\{\theta \in[0,2 \pi], r \in[0, R], z \in\left[0,-\frac{h}{R} r+h\right]\right\}$.

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{R} \int_{0}^{h(1-r / R)} d z(r d r) d \theta \\
& =h \int_{0}^{2 \pi} \int_{0}^{R}\left(1-\frac{r}{R}\right) r d r d \theta \\
& =h \int_{0}^{2 \pi} \int_{0}^{R}\left(r-\frac{r^{2}}{R}\right) d r d \theta \\
& =h\left(\frac{R^{2}}{2}-\frac{R^{3}}{3 R}\right) \int_{0}^{2 \pi} d \theta=2 \pi h R^{2} \frac{1}{6}
\end{aligned}
$$

We conclude: $V=\frac{1}{3} \pi R^{2} h$.

