Directional Derivative

Directional derivative of ϕ in the direction of *a* is

$$\frac{d\phi}{ds} = a . gradq$$
where $a = \frac{a}{\tilde{c}}$,
 $\frac{dr}{\left| \frac{dr}{c} \right|}$,

which is a unit vector in the direction of dr.

Unit Normal Vector

Equation $\phi(x, y, z) = \text{constant}$ is a surface equation. Since $\phi(x, y, z) = \text{constant}$, the derivative of $\phi = d r$ is zero; i.e. $\phi = 0$ $\Rightarrow \left| d r \right| \left| \text{grad } \phi \right| \cos \theta = 0$ $\Rightarrow \cos \theta = 0$ $\Rightarrow \theta = 90^{\circ}.$

• This shows that when $\phi(x, y, z) = \text{constant}$, grad $\phi \perp d r$.

Vector grad φ = ∇ φ is called <u>normal vector</u> to the surface φ(x, y, z) = constant

Unit normal vector is denoted by

$$n = \frac{\nabla \phi}{|\nabla \phi|}.$$

Example:

Calculate the unit normal vector at (-1,1,1)for 2yz + xz + xy = 0.

Given 2yz + xz + xy = 0. Thus Solution

$$\nabla \phi = (z + y) i + (2z + x) j + (2y + x) k.$$

At (-1,1,1), $\nabla \phi = (1+1) i + (2-1) j + (2-1) k$
 $= 2i + j + k$
and $|\nabla \phi| = \sqrt{4+1+1} = \sqrt{6}.$

.:. The unit normal vectoris

$$n = \frac{\nabla \phi}{|\nabla \phi|} = \frac{2i + j + k}{\sqrt{6}} = \frac{1}{\sqrt{6}} (2i + j + k)$$