Laplace Transform



The French Newton
Pierre-Simon Laplace

. Developed mathematics in
astronomy, physics, and statistics

. Began work in calculus which led
to the Laplace Transform

[ Focused later on celestial
mechanics

2 One of the first scientists to
suggest the existence of black
holes




History of the Transform

. Euler began looking at integrals as solutions to differential equations
in the mid 1700’s:

X(ze* dr 2(x;a) = [ e X(1) dt,
I ;

. Lagrange took this a step further while working on probability density
functions and looked at forms of the following equation:

/ X(r)e™™a" dx,

[ Finally, in 1785, Laplace began using a transformation to solve
equations of finite differences which eventually lead to the current
transform




Definition

[ The Laplace transform is a linear operator
that switched a function f(t) to F(s).

[~ Specifically: JORFAVOEN IERFOF:
where:

[*: Go from time argument with real input to a
complex angular frequency input which is
complex.




Restrictions

[*: There are two governing factors that
determine whether Laplace transforms can
be used:

= f(t) must be at least piecewise continuous for
t=0

= |[f(t)] = MeYtwhere M and y are constants



Continuity

[=:Since the general form of the Laplace
transform is:

it makes sense that f(t) must be at least
piecewise continuous for t = 0.

[ If f(t) were very nasty, the integral would
not be computable.



Boundedness

[=: This criterion also follows directly from the
general definition:

[ If f(t) is not bounded by MeYt then the
integral will not converge.



Laplace Transform Theory

*General Theory F(s) =£(f(1) = l"e‘“f (t)dt = lim ’ et f(t)dt
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Laplace Transforms

*Some Laplace Transforms
*Wide variety of function can be transformed

eInverse Transform

L7H(F(s)) = f()

*Often requires partial fractions or other
manipulation to find a form that is easy
to apply the inverse

() = L7HF(s)}

3. 1", n =posilive integer
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Laplace Transform for ODEs

Equation with initial conditions y(0)=y'(0)=0

Laplace transform is linear L")+ L(y)=L()

*Apply derivative formula S2L(y) —sy(0) = y"(0)+ L) =

. - 1 1
Rearrange L) = 1 s

s(s? + 1:}: s s2+1

*Take the inverse o
vy =1-—cost




Laplace Transform in PDEs

Laplace transform in two variables (always taken o)) = U5 = fﬂ u
with respect to time variable, t): ° :

Inverse laplace of a 2 dimensional PDE: L7HU(x,9)} = u(x,t)

Can be used for any dimension PDE: Lulxy.z,t)}=Ulxy.zs)

The Transform reduces dimension by “1”:

*ODEs reduce to algebraic equations

*PDEs reduce to either an ODE (if original equation dimension 2) or
another PDE (if original equation dimension >2)



Consider the case where:
u.tu=t with u(x,0)=0 and u(0,t)=t?> and

Taking the Laplace of the initial equation leaves U, + U=1/s? (note that the

kN

partials with respect to “x” do not disappear) with boundary condition
U(0,s)=2/s3

Solving this as an ODE of variable x, U(x,s)=c(s)e* + 1/s?
Plugging in B.C., 2/s3=c(s) + 1/s? so c¢(s)=2/s3- 1/s?
U(x,s)=(2/s3 - 1/s?) e*+ 1/s?

Now, we can use the inverse Laplace Transform with respect to s to find

u(x,t)=t2e>- tex + t



Example Solutions



Diffusion Equation

u, =ku, in (0,])
Initial Conditions:
u(0,t) = u(l,t) =1, u(x,0) =1 + sin(trx/l)

Using af(t) + bg(t) 2 aF(s) + bG(s)
and df/dt - sF(s) — f(0)

and noting that the partials with respect to x commute with the transforms with
respect to t, the Laplace transform U(x,s) satisfies

sU(x,s) — u(x,0) = kU, (x,5)

With e - 1/(s-a) and a=0,
the boundary conditions become U(0,s) = U(l,s) = 1/s.

So we have an ODE in the variable x together with some boundary conditions.
The solution is then:

U(x,s) = 1/s + (1/(s+kmn?/1%))sin(wx/1)
Therefore, whezn glve invert the transform, using the Laplace table:
u(x,t) = 1 + e* gin(nx/1)



Wave Equation

U, =c’u, in0<x<ow
Initial Conditions:
u(0,t) = f(t), u(x,0)=u(x,0)=0

For x = =, we assume that u(x,t) > 0. Because the initial conditions
vanish, the Laplace transform satisfies

s?U = c?U,,

U(O,s) = F(s)

Solving this ODE, we get

U(x,5) = a(s)e™¥c + b(s)es

Where a(s) and b(s) are to be determined.
From the assumed property of u, we expect that U(x,s) 2 0 as x 2 «.

Therefore, b(s) = 0. Hence, U(x,s) = F(s) e¥c. Now we use
H(t-b)f(t-b) > e®F(s)

To get

u(x,t) = H(t — x/c)f(t — x/c).



Real-Life Applications

[ Semiconductor
mobility

=2 Call completion in
wireless networks

[2 Vehicle vibrations on
compressed rails

[=2 Behavior of magnetic
and electric fields
above the
atmosphere




Ex. Semiconductor Mobility

[ Motivation

= semiconductors are commonly »
made with superlattices having |
layers of differing compositions

= need to determine properties of
carriers in each layer

[*: concentration of electrons and .
holes

=2 mobility of electrons and holes
= conductivity tensor can be related

to Laplace transform of electron »
and hole densities i



Notation

. R = ratio of induced electric field to the product of
the current density and the applied magnetic field

[ p = electrical resistance

. H = magnetic field

. J = current density

[ E = applied electric field

[ n = concentration of electrons
[ u = mobility




Equation Manipulation

> - nep
Ul (eH)]

_ - nep’H
"1+ uH)F




Assuming a continuous mobility
distribution and that EXRETX .

BPETA, it follows:
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Applying the Laplace Transform

dx |dt




