Ordinary Differential Equations



Differential equation

An equation relating a dependent variable to one
or more independent variables by means of its
differential coefficients with respect to the
independent variables 1s called a “differential
equation”.

d’ d Ordinary differential equation --------
y (y) +4y=4e" cosx

e only one independent variable involved: x

oT O*T O°T O°T. Partial differential equation ---------------
P Cp 00 = k( P T 5y2 T pz2  ~more than one independent variable involved: X, y, z, 0




Order and degree

* The order of a differential equation 1s equal to the
order of the highest differential coefficient that it
contains.

* The degree of a differential equation 1s the highest
power of the highest order differential coefficient
that the equation contains after 1t has been

rationalized.
O 3rd order O.D.E.

+4y=4e" cosx
dx (a’x 4

st degree O.D.E.



[Linear or non-linear

 Differential equations are said to be non-
linear 1f any products exist between the
dependent variable and 1ts derivatives, or
between the derivatives themselves.
d’y | dy.,
———(—)~"+4y=4e" cosx
dx’ (dx) \y

Product between two derivatives ---- non-linear

—+4y°=Ccosx

Product between the dependent variable themselves ---- non-linear



First order differential equations

* No general method of solutions of 1st
O.D.E.s because of their different degrees

of complexity.
* Possible to classify them as:

— exact equations

— equations 1n which the variables can be
separated

— homogenous equations

— equations solvable by an integrating factor



e Exact?

For example

Exact equations
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Separable-variables equations

* In the most simple first order differential
equations, the independent variable and its
differential can be separated from the
dependent variable and its differential by
the equality sign, using nothing more than
the normal processes of elementary algebra.

For example
dy .
y—=8Smx
dx



Homogeneous equations

 Homogeneous/nearly homogeneous?

« A differential equation of the type,

dy _ [zj

dx X
1s termed a homogeneous differential equation
of the first order.

* Such an equation can be solved by making the
substitution # = y/x and thereafter integrating the
transformed equation.



Homogeneous equation example

Liquid benzene is to be chlorinated batchwise by sparging chlorine gas
into a reaction kettle containing the benzene. If the reactor contains
such an efficient agitator that all the chlorine which enters the reactor
undergoes chemical reaction, and only the hydrogen chloride gas
liberated escapes from the vessel, estimate how much chlorine must be
added to give the maximum yield of monochlorbenzene. The reaction
1s assumed to take place 1sothermally at 55 C when the ratios of the
specific reaction rate constants are:

CH,+Cl, - C,H.Cl +HCl



Take a basis of 1 mole of benzene fed to the reactor and introduce
the following variables to represent the stage of system at time 0,

p = moles of chlorine present
q = moles of benzene present

r = moles of monochlorbenzene present
s = moles of dichlorbenzene present
t = moles of trichlorbenzene present

Thenq+r+s+t=1

and the total amount of chlorine consumed is: y =1 + 2s + 3t
From the material balances : in - out = accumulation

O—klpq:V%
k\pq —k, pr = %
k,pr—k;ps = %
k,ps = %

dr

A/A/uzr/q




Equations solved by integrating factor

» There exists a factor by which the equation can be multiplied
so that the one side becomes a complete differential
equation. The factor 1s called “the integrating factor”.

d
d—y +Py=0 where P and Q are functions of x only
X

Assuming the integrating factor R 1s a function of x only, then

R % + VRP|= RO
r R = eprde) is the integrating factor
R @ + R _4d (Ry)
dx Y dx dx Y




Example
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Summary of Ist O.D.E.

 First order linear differential equations
occasionally arise in chemical engineering
problems 1n the field of heat transfer,
momentum transfer and mass transfer.



First O.D.E. 1n heat transfer

An elevated horizontal cylindrical tank 1 m diameter and 2 m long is insulated with
asbestos lagging of thickness / =4 cm, and 1s employed as a maturing vessel for a
batch chemical process. Liquid at 95 C is charged into the tank and allowed to
mature over 5 days. If the data below applies, calculated the final temperature of the
liquid and give a plot of the liquid temperature as a function of time.

Liquid film coefficient of heat transfer (h,) =150 W/m?C
Thermal conductivity of asbestos (k) =0.2 W/mC
Surface coefficient of heat transfer by convection and radiation (h,) =10 W/m?C
Density of liquid (p) =10 kg/m’
Heat capacity of liquid (s) = 2500 J/kgC
Atmospheric temperature at time of charging =20C
Atmospheric temperature (t) t=10+ 10 cos (n0/12)

Time in hours (0)
Heat loss through supports is negligible. The thermal capacity of the lagging can be ignored.



Arecaoftank (A)=(rx1x2)+2(1/4nx12)=2.51 m?

Rate of heat loss by liquid=h,; A(T - T,)
Rate of heat loss through lagging = kA/I (T, - T,)
Rate of heat loss from the exposed surface of the lagging = h, A (T, - t)

At steady state, the three rates are equal:

kA
AT =T1,)=— T, ~T)=hAT, =) ——> T =0.3267 +0.674¢
Considering the thermal equilibrium of the liquid,

input rate - output rate = accumulation rate > () — hz A(T. —t)=Vps d_T
) do

A\

T
t d—+0.0235T =0.235+0.235cos(70 /12)
do
I
T B.C. 0=0,T=95

[ SR



Second O.D.E.

e Purpose: reduce to 1st O.D.E.

» Likely to be reduced equations:

— Non-linear
« Equations where the dependent variable does not occur explicitly.
« Equations where the independent variable does not occur explicitly.

« Homogeneous equations.

— Linear
* The coefficients in the equation are constant
» The coefficients are functions of the independent variable.



Non-linear 2nd O.D.E.

- Equations where the dependent variables does not
occur explicitly

* They are solved by differentiation followed by the
p substitution.

* When the p substitution 1s made 1n this case, the
second derivative of y 1s replaced by the first
derivative of p thus eliminating y completely and
producing a first O.D.E. in p and x.



Solve

Let

dzy

2

dx

d
+x—y:ax
dx

p

_ Y

and therefore

d—p+xp:ax

dx

integral factor

dp_dzy
dx  dx’

error function



Non-linear 2nd O.D.E.

- Equations where the independent variables does
not occur explicitly

* They are solved by differentiation followed by the
p substitution.

* When the p substitution 1s made 1n this case, the

second derivative of y 1s replaced as

dy
L ==
et p i

dy dp _dpdy  dp
.dxz dx dydx pdy




d’y dy
Solve +1=(Z)3
y de (dx)
_ @ v dp
Let »= . and therefore 3= pd—y
d
w1 = p?
dy

Separating the variables

d
p:_y:\/(azyz _|_1)
dx

l

dy

x:IJW5f+D
X = (%)sinh_l (ay)+b



Non-linear 2nd O.D.E.- Homogeneous equations

* The homogeneous 1st O.D.E. was in the form: % =/ (f)

* The corresponding dimensionless group containing
1 . 5 . . 2
the 214 differential coefficient is x‘é_{

X

e In general, the dimensionless group containing the

: : d"
n'? coefficient is x"—ld—f
X

e The second order homogenous differential e(%uation

. d .
can be expressed in a form analogous to .=/ f) , VIZ.

X = U, x —

dzy _ f ¥ dy I Assuminguzy/i ) d2u B [ duj Assuming x = e
dx” dx

. d’u du du
If in this form, called homogeneous 2nd ODE — = U, —




) 2
Solve |2x°y Zx); +y° = xz(ﬁj

Dividing by 2xy

- il
dx> 2x 2y\dx
homogeneous | x4 — f[l,ﬂj
dx xdx y = Ax Singular solution
Let y=ux
“ ) y=x(Blnx+C)’
, d’u du  ,( du
2ux 5T 2ux d_ =X d_ * General solution
X X X
Let l x=¢'

Y
AN
|
[
A




A graphite electrode 15 cm in diameter passes through a furnace wall into a water
cooler which takes the form of a water sleeve. The length of the electrode between
the outside of the furnace wall and its entry into the cooling jacket is 30 cm; and as

a safety precaution the electrode in insulated thermally and electrically in this section,
so that the outside furnace temperature of the insulation does not exceed 50 C.

If the lagging 1s of uniform thickness and the mean overall coefficient of heat transfer
from the electrode to the surrounding atmosphere is taken to be 1.7 W/C m? of
surface of electrode; and the temperature of the electrode just outside the furnace is
1500 C, estimate the duty of the water cooler if the temperature of the electrode at
the entrance to the cooler is to be 150 C.

The following additional information 1s given.

Surrounding temperature =20C
Thermal conductivity of graphite kr=k,-aT=152.6-0.056 T W/m C
The temperature of the electrode may be assumed uniform at any cross-section.

T— | {




The sectional area of the electrode A= 1/4 1 x 0.152=0.0177 m?
A heat balance over the length of electrode ox at distance x from the furnace is

input - output = accumulation

(kAdT

i)

where

d

dx

X

|

.

dx

—( —k A—)5x+7zDU(T T)é'xj

U = overall heat transfer coefficient from the electrode to the surroundings
D = electrode diameter

kT

dT

X

j5x =
d

aDU|

A

T—»

A 4

d daT
(T-T)d = (ke |- pr-1)=0

d°T dT
(ko—aT)dxz— (dj ~B(T-T)=0

Par = i

:d_T dp _a’zT
dx

d,
(ky~al)p-~ap’ = f(T~T,)=0



dp
(ko —alp L —ap? - T -1 =0
pkzl y=(T-T))

[(ky —aT) -] 2~ 202 -2 =0
dy

Integrating factor _ 2ady — (k. — 2
|exp[ o)ty -
(k,—aTl)dT

X =
J\/[C+,3(ko —al)(T-1,)" -2/3af(T -T,)’]




Linear differential equations

* They are frequently encountered in most chemical
engineering fields of study, ranging from heat,
mass, and momentum transfer to applied chemical
reaction kinetics.

* The general linear differential equation of the nth
order having constant coefficients may be written:

d"y d”_ly dy
P + P +..+P ——+Pv=0o(x
O dx” ! " dx Y= 9)

where ¢(x) 1s any function of x.



2nd order linear differential equations

The general equation can be expressed in the form

Z’, +Q—+Ry H(x)
x

where P,Q, and R are constant coefficients

Let the dependent variable y be replaced by the sum of the two new variables: y =u + v
Therefore

d’u du d>v
P +0—+R P + + Ry | =
[ 0t u} [ dxz/@%/ v} (%)

If v 1s a particular solution of the original differential equation

d’u du
P + 0O —+ Ru 0
|: dx? Q dx }

The general solution of the linear differential equation will be the sum of
| a “complementary function” and a ““particular solution’1

Y—— purpose




The complementary function

d’y v
— P +0—+Ry=0
dx’ = dx Y
2
Let the solution assumed to be: |y =4 e™ b _ A me™ 4y =4 m’e™
dx e "

—— A "™ (Pm”> +0Om+R)=0

auxiliary equation (characteristic equation)

{ Unequal roots

Equal roots

{ Real roots
Complex roots




Unequal roots to auxiliary equation

» Let the roots of the auxiliary equation be distinct and of
values m, and m,. Therefore, the solutions of the auxiliary
equation are:

mlx

y=Ae y=A4,e"™

* The most general solution will be

mx My X

y=Ae " +4e

* [fm, and m, are complex it 1s customary to replace the
complex exponential functions with their equivalent

trigonometric forms.



2
Solve d_f_ Q+6y:o
dx dx

l auxiliary function

m* —5m+6=0

l

m, =2

m, =

Y= Ae*™ + Be**




Equal roots to auxiliary equation

» Let the roots of the auxiliary equation equal and of value
m, = m, = m. Therefore, the solution of the auxiliary

equationis: - g™
dy dV d’y d’v dV
=Ve™| —=e" —+mle™ =e™ +2me™ — +m’Vi
Let |y=Ve o o 2 e I me T m-Ve

where V is a function of x P dz); + Qﬂ +Ry=0
dx dx

y=(Cx+d)e™

dv I
I =0 = V=Cx+D




2
47 6% 19y-0
dx dx

Solve

l auxiliary function

m*+6m+9=0

I
|
S}

m, =m,

y=(A+Bx)e™




Solve

d’y . dy
£ 4% 15,0
dx? dx Y

l auxiliary function

m’ —4m+5=0

y=e"*(Ecosx+ Fsinx)




Particular integrals

 Two methods will be introduced to obtain

the particular solution of a second linear
O.D.E.

— The method of undetermined coefficients

 confined to linear equations with constant
coefficients and particular form of ¢ (x)

— The method of inverse operators
» general applicability

dzy

P
dx?

+O 2 Ry = ()




Method of undetermined coefficients

d? o
r dx{ —|—Qd—i:—|—Ry — #H(x)

 When ¢ (x) 1s constant, say C, a particular integral of
equation 1s

y=C/R

 When ¢ (x) 1s a polynomial of the form o, +a,x+a,x* +...+a x"
where all the coefficients are constants. The form of a
particular integral 1s

V=, +o,x+oa, x> +...+a,x"

 When ¢ (x) 1s of the form Te™, where T and r are
constants. The form of a particular integral 1s

rx
y = ce




Method of undetermined coefficients

d? o
r dx{ —|—Qd—i:—|—Ry — SH(x)

 When ¢ (x) 1s of the form G sin nx + H cos nx, where
G and H are constants, the form of a particular
solution 1s

y = Lsinnx+ M cos nx

* Modified procedure when a term 1n the particular
integral duplicates a term in the complementary
function.



2
Solve d);— d—y+4y=4x+8x3 — : > m2_4m+4m:()
dx dx auxiliary equation
y=p+gx+rx’ +sx’
Q=q+2rx+3sx2
) dx
7 g/ =2r+6sx
X

v

(2r +65x)—4(q+2rx+3sx") +4(p+gx+rx" +5x°) =4x+8x
Equating coefficients of equal powers of x

( 2r—4g+4p =0
< 6S—87"+4q:4 v

4r —12s =0 yC:(A+Bx)e2x

\ 45 =8 l l

v

Y, =7 +10x+6x" +2x°

ygeneral:yc +yp




Method of inverse operators

 Sometimes, 1t 1s convenient to refer to the
symbol “D” as the differential operator:

dy
Dy = —
Y dx
dzy 2
D(Dy) =D’y = 2 BU.t, (DJ/)ZZ(%)
X
d”y
D"y =
Y dx”
d’y ,dy

—I—3d—-|—2y —— D’y +3Dy+2y=(D’ +3D+2)y=(D+1)(D+2)y




The differential operator D can be treated as an ordinary algebraic
quantity with certain limitations.

(1) The distribution law:
A(B+C)=AB + AC
which applies to the differential operator D

(2) The commutative law:
AB =BA
which does not 1n general apply to the differential operator D
Dxy # xDy
(D+1)(D+2)y = (D+2)(D+1)y

(3) The associative law:
(AB)C=A(BCO)
which does not in general apply to the differential operator D
D(Dy) = (DD)y
D(xy) = (Dx)y + x(Dy)

The basic laws of algebra thus apply to the pure operators, but the
relative order of operators and variables must be maintained.




Differential operator to exponentials

De™ = pe™ (D> +3D+2)e™ =(p” +3p+2)e™

Dnepx — pnepx

f(D)e™ = f(p)e”

D(ye”)=e”Dy+ yDe”™ =e” (D+ p)y
D*(ye™)=e"™(D+ p)’y

D" (ye”)=e”(D+p)'y

More convenient!
f(D)(ye™)=e" f(D+ p)y




Differential operator to
trigonometrical functions

D" (sin px) = D" Ime™ = ImD"e” = Im(ip)" "

where “Im” represents the imaginary part of the function which follows it.

e = cos px +isin px

D*'(sin px) = (=p°)" sin px
D*""'(sin px) = (—p*)" pcos px
D*"(cos px) =(—p>)" cos px
D" (cos px) =—(—p*)" psin px




The 1nverse operator
The operator D signifies differentiation, 1.e.
D[ f(dx|= f(x) —— [ f@)de=D"f(x)

D-! is the “inverse operator” and is an “intergrating” operator.
o[t can be treated as an algebraic quantity in exactly the same manner as D



Solve Q_4y:e2x
dx
l differential operator
(D-4)y=e"
_ 1 2x S(D)e™ = f(p)e™ 1
T D=4 YT 2= €
| "
Y= 11 e2x
401~ D)
l binomial expansion
I A DS IS [y
y——Ze [1+(4D)+(4D) +(4D) +...]1
l =2
1 2x 1 2x
y= [1+()()+()+]—>y=—§e<




1L D =f(p)e” 1
y — e > — er
(LD p=2 (2—4)
f(D) f(p)
\ AR fp) = 0, (EREZK AT
1 epx — 1 epx
(D) (D—p) o(D)
JEOHYER T
J S(D)e™ = f(p)e™
1 e 1 SDyer=ef(Dipy g e

pX

px

- e = " > e — -
f(D) o(p) (D—p)" y=1p=0,EEDpisD f(D) o(p) D

px n

1 px e | X integration

|

| -

px

A

D " p(p)n

D" pp)

1




Solve

2
Z{—Sjy+l6y:6xe4x —_— m2—8m+16=O
X X
l differential operator J
(D*—8D+16)y =(D—4)* y =6xe™ y. =(A+ Bx)e**
y — 6 xe4x
TD-d Y=Y tY,
fn) =0
f(D)e” =e™ f(D+ p) $
y,= 6xe** D~
l integration
2
4x X .
yp — 6xe E R yp — 3x3e4 ]



Solve
d’y dy

dx’ dx

l differential operator

(D> -~D—6)y=(D-3)(D+2)y=4x" +3x"

l

1
- (D-3)(D+2)

l

i 1 I s
yp__g{(B—D)+(2+D)}(4x )

Y, (4x° +3x7)

l expanding each term by binomial theorem

6 36 216 1296

4x° +3x> 12x° +6x 7(24x+6) 13x24
= + = + —0...

— = —6y=4x’+3x> —

m* —m—-6=0

|

y, = Ae’* + Be™

|

Y=Y Y,

A




O.D.E 1in Chemical Engineering

A tubular reactor of length L and 1 m? in cross section is
employed to carry out a first order chemical reaction in
which a material A 1s converted to a product B,

A —> B

« The specific reaction rate constant is & s-!. If the feed rate is
u m’/s, the feed concentration of A is C,, and the
diffusivity of A is assumed to be constant at D m?/s.
Determine the concentration of A as a function of length
along the reactor. It is assumed that there is no volume
change during the reaction, and that steady state conditions
are established.



The concentraion will vary in the entry section
—u.< _u due to diffusion, but will not vary in the section
C
0

C following the reactor. (Wehner and Wilhelm, 1956)
Ce X ] — AR {[Elsection
OX
X x+ox
aC
Bulk flow of A uC uC+ud—5x
X
aC
Diffusion of A —D— —D d_C + i (— D d—Cj&c
dx dx dx dx

A material balance can be taken over the element of length ox at a distance x fom the inlet

Input - Output + Generation = Acc/um@nion

{(uC)+(—Df§ﬂ—{(uC+ugdxj+(—D§+;C(—ngéxﬂ—kCész



ol o o) ot o e

v

(&

dividing by 0x

o

l rearranging
2 In the entry section
Dd(;—udc—kC:O 7 >
dx dx

l

auxillary function

Dm?* —um—k =0

l

C= Aexp{zD (1+a)}+BeXp[

a :\/(1+4kD/u2)

o a)}

2D

) -
DdC dC

dz—u =0
X dx

l auxillary function

Dm* —um =0

l

a+ﬂexp{bg}



C=Aexp{—D(lnLa)}rBexp{;—x(l—a)} é=a+,6’exp[%}
J B. C. l B.C

xX= dc _dc x=-wo C=C

dx dx _ 0
o7 € _, x=0 C=C

em(%j{(aﬂ)em[%@_x)}(a_1)exp{_%@_x)}

K =(a+1) exp(uLa/2D)—(a—1) exp(~uLa/2D)

if diffusion 1s neglected (D—0) CO - C —kx
> =l-exp| —

C, u



The continuous hydrolysis of
tallow 1n a spray column st

Glycerin, HH

1.017 kg/s of a tallow fat mixed with 0.286 kg/s of high pressure hot water is fed into
the base of a spray column operated at a temperature 232 C and a pressure of

4.14 MN/m?. 0.519kg/s of water at the same temperature and pressure is sprayed

into the top of the column and descends in the form of droplets through the rising fat
phase. Glycerine is generated in the fat phase by the hydrolysis reaction and is extracted
by the descending water so that 0.701 kg/s of final extract containing 12.16% glycerine
is withdrawn continuously from the column base. Simultaneously 1.121 kg/s of fatty
acid raffinate containing 0.24% glycerine leaves the top of the column.

If the effective height of the column is 2.2 m and the diameter 0.66 m, the glycerine
equivalent in the entering tallow 8.53% and the distribution ratio of glycerine between
the water and the fat phase at the column temperature and pressure 1s 10.32, estimate
the concentration of glycerine in each phase as a function of column height. Also find
out what fraction of the tower height 1s required principally for the chemical reaction.

The hydrolysis reaction is pseudo first order and the specific reaction rate constant is
0.0028 s°1.




Tallow fat

Raffinate

L ke/s L kg/s G kg/s
XH Yu
| "
x+0x!
z+0z Il y*+oy
A A Sh
~ y
Z \ 4
h
Hot water
G kg/s ‘ \
Extract
X0 Yo
Z

x = weight fraction of glycerine in raffinate
y = weight fraction of glycerine in extract

y = weight fraction of glycerine in extract in equilibrium with x

z = weight fraction of hydrolysable fat in raffinate



|

Consider the changes occurring in the element of column of height oh:

Glycerine transferred from fat to water phase, KgS(3*—y)oh
Rate of destruction of fat by hydrolysis, kpSzoh
Rate of production of glycerine by hydrolysis, KpSzoh /w

S: sectional area of tower k: specific reaction rate constant
a: interfacial area per volume of tower p: mass of fat per unit volume of column (730 kg/m?)

K: overall mass transter coefficient w: kg fat per kg glycetine

A glycerine balance over the element oh is:

Lx— L(x & éhj + KOS28R) _ (% y)on in the fat phase Lkgs  Ghkels
dh w Xy Vi
dy . Zy
G[ y+ o éhj — Gy =KaS ( y—y *)éh in the extract phase
A glycerine balance between the element and the base of the tower is: X+6>1 l
Lz Lz 7+07 y+8y
( Lx+—— _Oj =0 in the fat phase R Sh
woow XT l ,
(Gy — Gy, ) ~0 in the extract phase h z
The glycerine equilibrium between the phases is:
X0 Yo
y* = mx [ZO l



kpSzKa[mzo+m (_ )} kp [KaS j @dy d’y KaSmdy_
e Lw YNNG an) (G an an )T L an

=G
koS | L
. L K S
‘ G
d’y pq mz,
dh2 (p Q) T, pqy = —1 I"yo T W 2nd O.D.E. with constant coefficients
Complementary function , ,
P y Particular solution

m* +(p+q)m+ pg=0 Constant at the right hand side, y, = C/R

1 |

v, = Aep(-ph)+ Bexp(=gh) v, =L =" ) pg




l B.C.

We don t know y,, either

h=0,y=y,

We don’t really want x here! | {
h=H,y=0

l Apply|the equations two slides earlier (replace y* with mx)

r—1
=y === (~ pAexp(—ph) —qB exp(—qh))

]

1
y(ve " —re ") = P (ryo 5 j[(r —e e (e —v)e " +ve ! —pe? H]
w

g+rp—p Substitute y, in terms of other variables
= —q h = 0’ y = yO

»
»

1%



y:

mz, o e =V
w(r—v) r—e
L Lo17+la2l o
. 0-286+0.519 .
701x0.1216+0.
- 0T01x0.1216+0276
0.701+0.286
m=10.32
k =0.0028
s=20.66
4

p =730



Simultaneous differential
equations

» These are groups of differential equations
containing more than one dependent
variable but only one independent variable.

 In these equations, all the derivatives of the
different dependent variables are with
respect to the one independent variable.

Our purpose: Use algebraic elemination of the variables until only
one differential equation relating two of the variables remains.




Elimination of variable

Independent variable or dependent variables?

dx

= fl (X >V ) . . :

dt Elimination of independent variable ~dx B f(x,»)
d dy  fo(x,
Lo Ry

Elimination of one or more dependent variables

It involves with equations of high order and
it would be better to make use of matrices

Solving differential equations simultaneously using
matrices will be introduced later in the term



Elimination of dependent variables

Solve

(D> +D—6)y+(D*+6D+9)z=0
and

(D> +3D-10)y+(D*>*-3D+2)z=0

|

x(D+5)

A 4

(D+3)(D-2)y+(D+3)’z=0 (D+3)(D-2)(D+5)y+(D+5)(D+3)’z=0
and and
(D=2)(D+5)y+(D-2)(D-1)z=0—=L%) __ J(D13)(D-2)(D+5)y+(D+3)(D-2)(D-1)z=0

A 4

l

(D+5)(D+3)’z—(D+3)(D-2)(D-1)z=0

(D+3)(11D+13)z=0 (D+3)|(D*+8D+15)—(D>-3D+2)[ =0

A




(D+3)11D+13)z=0

l

_130 s
z=Ae "' + Be

l(D2 +D—-6)y+(D*+6D+9)z=0

2 —Ex
(D? +D—6)y={(%) —(6;(113}9}@ 1

oo

V., = He™ + Je™*

Y=Y TY,

v

1 1
> — Ee 11
Yy (D* +D—6)
f(D)e™ = f(p)e™ p=—§
1 12
y, = Ee !

13, 13
((— 11) + (—11) —6)

A



Example of simultanecous O.D.E.s

1.25 kg/s of sulphuric acid (heat capacity 1500 J/kg C) is to be cooled in a two-stage counter-
current cooler of the following type. Hot acid at 174 C is fed to a tank where it 1s well stirred in
contact with cooling coils. The continuous discharge from this tank at 88 C flows to a second
stirred tank and leaves at 45C. Cooling water at 20 C flows into the coil of the second tank and
thence to the coil of the first tank. The water 1s at 80 C as it leaves the coil of the hot acid tank.
To what temperatures would the contents of each tank rise if due to trouble 1n the supply, the
cooling water suddenly stopped for 1h?

On restoration of the water supply, water is put on the system at the rate of 1.25 kg/s. Calculate
the acid discharge temperature after 1 h. The capacity of each tank is 4500 kg of acid and the
overall coefficient of heat transfer in the hot tank is 1150 W/m? C and in the colder tank

750 W/m? C. These constants may be assumed constant.



80 C 40 C 20C o6 ke/s
> ——
1.25 kg/s 45C
174 C
Heat transfer area A Heat transfer area A,
Steady state calculation: Heat capacity of water 4200 J/kg C

1.25x1500x(174—-45)=F, .. x4200x(80—20) F .. =096kg/s

ater water

1.25x1500% (88 —45) =0.96x4200x(T_, ., —20) T .=40"C
1.25x1500%x (174 —88) =1150x A, x AT
and S Note: FIBLEERAALE
Ap_ (88-80)—(88-40) __, ., i |
1n[(88—80)j a7 (174-80)—(88—40) _ o
(88 — 40) :

ln[(174_80)j :
e \.(B8=40) )



When water fails for 1 hour, heat balance for tank 1 and tank 2:

dT,
Tank 1 MCT, - MCT, =VC —+ M: mass flow rate of acid
dt . : :
C: heat capacity of acid
Tank 2 MCT —MCT. =VC @ V: mass capacity of tank
1 ’ dt T.: temperature of tank i
v e B.C.
7, -7 ="t =L, 71 —174-86¢™
. _d7, |  t=1,T=1424C
' > dr [

174—86¢ —1, = 912 Integral factor. e, 7 _ 174 _ (867 +129)c™

dt
B.C.
t=0,T,=45

t=1,T,=94.9C



When water supply restores after 1 hour, heat balance for tank 1 and tank 2:

T
Tank 1 (WCWt2 +MCT, )— (Wth1 +MCT, ) =VC %
Tank2  (WC,t +MCT,)-(WC,1, + MCT, )= VC %
tl E b W: mass flow rate of water

C,,: heat capacity of water

T, I T, 2 T, t,: temperature of water leaving tank 1
t,: temperature of water leaving tank 2
t;: temperature of water entering tank 2

Heat transfer rate equations for the two tanks:

WC, (t,—t,)=U, 4, T -1)-T-1) }
In(7} —1,) - In(7; - 1,) .
- } 4 equations have to be

(7, -t,)-(T,-t;) :
e, (6, —t)=U, 2 In(T, —1,)—In(Ty - 1,) solved simultaneously




(WCt,+ MCT, ) - (WC(t)+ MCT)) = VC%@
(WC. t, + Mc@) - (Wc@+ Mc@) -VC %@

o=e

vl @t (T 1)
et tz)_UlAl_lnm—a)—m(Tl—rz)} e, |MA-e)=t)-at,

Uy 4,

o @en-@ - I
we.,(t, t3)_U2A2_ln(T2—tz)—ln(Tz—lg)} L=e " @(1 /B)_@ pt

%2 % dependent variable (HIFREY, 35357 ¢ R REE/D > SHE | (e = ***0A)
F FH R R DY & TR

RAZEE

d’T,
dt’

+6.08%+7.75T2 =309

B.C.t=0,T,=949C

ERGEIET,



HA [ > Ist order O.D.E. FEZEREIHA » FEFINE ¢

Check exact

Separate variables

homogenous equations, u = y/x

equations solvable by an integrating factor

2nd order DL_FHJO.D.E » Non-linear O.D.E.
| e er oLy
Linear O.D.E.

#x 1y O.D.E., reducedto 1st O.D.E.
it y iy O.D.E., reduced to 1st O.D.E.
homogeneous {4 O.D.E., u=y/x

v

General solution = complementary solution + particular solution

variable coefficient? «——— TS RETYER 5> SRR 70
FHELFI#% > next course

v The method of undetermined coefficients
constant coefficients The method of inverse operators



