
Ordinary Differential Equations 



Differential equation 

• An equation relating a dependent variable to one 

or more independent variables by means of its 

differential coefficients with respect to the 

independent variables is called a “differential 

equation”. 
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Partial differential equation --------------- 

more than one independent variable involved: x, y, z,  



Order and degree 

• The order of a differential equation is equal to the 

order of the highest differential coefficient that it 

contains. 

• The degree of a differential equation is the highest 

power of the highest order differential coefficient 

that the equation contains after it has been 

rationalized. 
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3rd order O.D.E. 

 

1st degree O.D.E. 



Linear or non-linear 

• Differential equations are said to be non-

linear if any products exist between the 

dependent variable and its derivatives, or 

between the derivatives themselves. 
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Product between two derivatives ---- non-linear 
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First order differential equations 

• No general method of solutions of 1st 

O.D.E.s because of their different degrees 

of complexity. 

• Possible to classify them as: 

– exact equations 

– equations in which the variables can be 

separated 

– homogenous equations 

– equations solvable by an integrating factor 



Exact equations 
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Separable-variables equations 

• In the most simple first order differential 

equations, the independent variable and its 

differential can be separated from the 

dependent variable and its differential by 

the equality sign, using nothing more than 

the normal processes of elementary algebra. 

For example 
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Homogeneous equations 

• Homogeneous/nearly homogeneous? 

• A differential equation of the type, 

 

 

 

 

• Such an equation can be solved by making the 

substitution u = y/x and thereafter integrating the 

transformed equation. 
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is termed a homogeneous differential equation 

of the first order. 



Homogeneous equation example 

• Liquid benzene is to be chlorinated batchwise by sparging chlorine gas 

into a reaction kettle containing the benzene. If the reactor contains 

such an efficient agitator that all the chlorine which enters the reactor 

undergoes chemical reaction, and only the hydrogen chloride gas 

liberated escapes from the vessel, estimate how much chlorine must be 

added to give the maximum yield of monochlorbenzene. The reaction 

is assumed to take place isothermally at 55 C when the ratios of the 

specific reaction rate constants are:  

k1 = 8 k2 ; k2 = 30 k3 

C6H6+Cl2  C6H5Cl +HCl 

C6H5Cl+Cl2  C6H4Cl2 + HCl 

C6H4Cl2 + Cl2  C6H3Cl3 + HCl 



Take a basis of 1 mole of benzene fed to the reactor and introduce 

the following variables to represent the stage of system at time , 

 

p = moles of chlorine present 

q = moles of benzene present 

r = moles of monochlorbenzene present 

s = moles of dichlorbenzene present 

t = moles of trichlorbenzene present 

 

Then q + r + s + t = 1 

and the total amount of chlorine consumed is: y = r + 2s + 3t 

From the material balances : in - out = accumulation 









d

dt
Vpsk

d

ds
Vpskprk

d

dr
Vprkpqk

d

dq
Vpqk









3

32

21

10

1)(
1

2 
q

r

k

k

dq

dr

u = r/q 



Equations solved by integrating factor 

• There exists a factor by which the equation can be multiplied 

so that the one side becomes a complete differential 

equation. The factor is called “the integrating factor”. 
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Summary of 1st O.D.E. 

• First order linear differential equations 

occasionally arise in chemical engineering 

problems in the field of heat transfer, 

momentum transfer and mass transfer. 



First O.D.E. in heat transfer  

An elevated horizontal cylindrical tank 1 m diameter and 2 m long is insulated with 

asbestos lagging of thickness l = 4 cm, and is employed as a maturing vessel for a 

batch chemical process. Liquid at 95 C is charged into the tank and allowed to 

mature over 5 days. If the data below applies, calculated the final temperature of the 

liquid and give a plot of the liquid temperature as a function of time. 

 

Liquid film coefficient of heat transfer (h1)    = 150 W/m2C 

Thermal conductivity of asbestos (k)    = 0.2  W/m C 

Surface coefficient of heat transfer by convection and radiation (h2) = 10   W/m2C 

Density of liquid ()      = 103   kg/m3 

Heat capacity of liquid (s)      = 2500 J/kgC 

Atmospheric temperature at time of charging    = 20 C 

Atmospheric temperature (t)    t = 10 + 10 cos (/12) 

Time in hours () 

Heat loss through supports is negligible. The thermal capacity of the lagging can be ignored. 



T 

Area of tank (A) = ( x 1 x 2) + 2 ( 1 / 4  x 12 ) = 2.5  m2 

Tw 

Ts 

Rate of heat loss by liquid = h1 A (T - Tw) 

Rate of heat loss through lagging = kA/l (Tw - Ts) 

Rate of heat loss from the exposed surface of the lagging = h2 A (Ts - t) 

t 

At steady state, the three rates are equal: 

)()()( 21 tTAhTT
l

kA
TTAh ssww  tTTs 674.0326.0 

Considering the thermal equilibrium of the liquid, 

input rate - output rate = accumulation rate 



d

dT
sVtTAh s  )(0 2

)12/cos(235.0235.00235.0 


 T
d

dT

B.C.     = 0 , T = 95 



Second O.D.E. 

• Purpose: reduce to 1st O.D.E. 

• Likely to be reduced equations: 

– Non-linear 

• Equations where the dependent variable does not occur explicitly. 

• Equations where the independent variable does not occur explicitly. 

• Homogeneous equations. 

– Linear 

• The coefficients in the equation are constant 

• The coefficients are functions of the independent variable. 



Non-linear 2nd O.D.E. 

 - Equations where the dependent variables does not 

occur explicitly 

• They are solved by differentiation followed by the 

p substitution. 

• When the p substitution is made in this case, the 

second derivative of y is replaced by the first 

derivative of p thus eliminating y completely and 

producing a first O.D.E. in p and x. 
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Non-linear 2nd O.D.E. 

 - Equations where the independent variables does 

not occur explicitly 

• They are solved by differentiation followed by the 

p substitution. 

• When the p substitution is made in this case, the 

second derivative of y is replaced as  
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Non-linear 2nd O.D.E.- Homogeneous equations 

• The homogeneous 1st O.D.E. was in the form: 

• The corresponding dimensionless group containing 

the 2nd differential coefficient is 

•  In general, the dimensionless group containing the 

nth coefficient is 

• The second order homogenous differential equation 

can be expressed in a form analogous to            , viz. 
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A graphite electrode 15 cm in diameter passes through a furnace wall into a water 

cooler which takes the form of a water sleeve. The length of the electrode between 

the outside of the furnace wall and its entry into the cooling jacket is 30 cm; and as 

a safety precaution the electrode in insulated thermally and electrically in this section, 

so that the outside furnace temperature of the insulation does not exceed 50 C. 

If the lagging is of uniform thickness and the mean overall coefficient of heat transfer 

from the electrode to the surrounding atmosphere is taken to be 1.7 W/C m2 of  

surface of electrode; and the temperature of the electrode just outside the furnace is 

1500 C, estimate the duty of the water cooler if the temperature of the electrode at 

the entrance to the cooler is to be 150 C. 

The following additional information is given. 

 

Surrounding temperature   = 20 C 

Thermal conductivity of graphite           kT = k0 - T = 152.6 - 0.056 T W/m C 

The temperature of the electrode may be assumed uniform at any cross-section. 
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T 
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The sectional area of the electrode A = 1/4  x 0.152 = 0.0177 m2 

A heat balance over the length of electrode x at distance x from the furnace is 

input - output = accumulation 
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Linear differential equations 

• They are frequently encountered in most chemical 

engineering fields of study, ranging from heat, 

mass, and momentum transfer to applied chemical 

reaction kinetics. 

• The general linear differential equation of the nth 

order having constant coefficients may be written: 
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where (x) is any function of x. 



2nd order linear differential equations 

The general equation can be expressed in the form 
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where P,Q, and R are constant coefficients 

Let the dependent variable y be replaced by the sum of the two new variables: y = u + v 

Therefore 
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The complementary function 

0
2

2

 Ry
dx

dy
Q

dx

yd
P

Let the solution assumed to be: 
mx

meAy  mx

mmeA
dx

dy
 mx

m emA
dx

yd 2

2

2



0)( 2  RQmPmeA mx

m

auxiliary equation (characteristic equation) 

Unequal roots 

Equal roots 

Real roots 

Complex roots 



Unequal roots to auxiliary equation 

• Let the roots of the auxiliary equation be distinct and of 

values m1 and m2. Therefore, the solutions of the auxiliary 

equation are: 

 

 

• The most general solution will be 

 

 

• If m1 and m2 are complex it is customary to replace the 

complex exponential functions with their equivalent 

trigonometric forms.  
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Equal roots to auxiliary equation 

• Let the roots of the auxiliary equation equal and of value 

m1 = m2 = m. Therefore, the solution of the auxiliary 

equation is: mxAey 
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Particular integrals 

• Two methods will be introduced to obtain 

the particular solution of a second linear 

O.D.E. 

– The method of undetermined coefficients 

• confined to linear equations with constant 

coefficients and particular form  of  (x) 

– The method of inverse operators 

• general applicability 
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Method of undetermined coefficients 

• When  (x) is constant, say C, a particular integral of 

equation is 

 

• When  (x) is a polynomial of the form                                

where all the coefficients are constants. The form of a 

particular integral is 

 

• When  (x) is of the form Terx, where T and r are 

constants. The form of a particular integral is 
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Method of undetermined coefficients 

• When  (x) is of the form G sin nx + H cos nx, where 

G and H are constants, the form of a particular 

solution is 

 

• Modified procedure when a term in the particular 

integral duplicates a term in the complementary 

function. 

)(
2

2

xRy
dx

dy
Q

dx

yd
P 

nxMnxLy cossin 



Solve 3

2

2

8444 xxy
dx

dy

dx

yd


32 sxrxqxpy 
232 sxrxq

dx

dy


sxr
dx

yd
62

2

2



3322 84)(4)32(4)62( xxsxrxqxpsxrxqsxr 

Equating coefficients of equal powers of x 

84

0124

4486

0442









s

sr

qrs

pqr

32 26107 xxxyp 

0442  mmm
auxiliary equation 

x

c eBxAy 2)( 

pcgeneral yyy 



Method of inverse operators 

• Sometimes, it is convenient to refer to the 

symbol “D” as the differential operator: 
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The differential operator D can be treated as an ordinary algebraic 

quantity with certain limitations. 

 

(1) The distribution law: 

A(B+C) = AB + AC 

which applies to the differential operator D 

 

(2) The commutative law: 

AB = BA 

which does not in general apply to the differential operator D 

Dxy  xDy 

(D+1)(D+2)y = (D+2)(D+1)y 

 

(3) The associative law: 

(AB)C = A(BC) 

which does not in general apply to the differential operator D 

D(Dy) = (DD)y 

D(xy) = (Dx)y + x(Dy) 

The basic laws of algebra thus apply to the pure operators, but the 

relative order of operators and variables must be maintained. 



Differential operator to exponentials 
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More convenient! 



Differential operator to 

trigonometrical functions 
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where “Im” represents the imaginary part of the function which follows it. 



The inverse operator 

The operator D signifies differentiation, i.e. 

  )()( xfdxxfD  )()( 1 xfDdxxf 

•D-1 is the “inverse operator” and is an “intergrating” operator. 

•It can be treated as an algebraic quantity in exactly the same manner as D 
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O.D.E in Chemical Engineering 

• A tubular reactor of length L and 1 m2 in cross section is 

employed to carry out a first order chemical reaction in 

which a material A is converted to a product B, 

 

• The specific reaction rate constant is k s-1. If the feed rate is 

u m3/s, the feed concentration of A is Co, and the 

diffusivity of A is assumed to be constant at D m2/s. 

Determine the concentration of A as a function of length 

along the reactor. It is assumed that there is no volume 

change during the reaction, and that steady state conditions 

are established. 

A      B 



u 
C0 

x 

L 

x 

u 
C 

A material balance can be taken over the element of length x at a distance x fom the inlet 

The concentraion will vary in the entry section 

due to diffusion, but will not vary in the section 

following the reactor. (Wehner and Wilhelm, 1956) 

x x+x 

Bulk flow of A 

Diffusion of A 
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The continuous hydrolysis of 

tallow in a spray column 連續牛油水解 

1.017 kg/s of a tallow fat mixed with 0.286 kg/s of high pressure hot water is fed into 

the base of a spray column operated at a temperature 232 C and a pressure of 

4.14 MN/m2. 0.519kg/s of water at the same temperature and pressure is sprayed 

into the top of the column and descends in the form of droplets through the rising fat 

phase. Glycerine is generated in the fat phase by the hydrolysis reaction and is extracted 

by the descending water so that 0.701 kg/s of final extract containing 12.16% glycerine 

is withdrawn continuously from the column base. Simultaneously 1.121 kg/s of fatty 

acid raffinate containing 0.24% glycerine leaves the top of the column. 

If the effective height of the column is 2.2 m and the diameter 0.66 m, the glycerine 

equivalent in the entering tallow 8.53% and the distribution ratio of glycerine between 

the water and the fat phase at the column temperature and pressure is 10.32, estimate 

the concentration of glycerine in each phase as a function of column height. Also find 

out what fraction of the tower height is required principally for the chemical reaction. 

The hydrolysis reaction is pseudo first order and the specific reaction rate constant is 

0.0028 s-1.  

Glycerin, 甘油 



Tallow fat Hot water 

G kg/s 

Extract 

Raffinate 

L kg/s 
L kg/s 
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G kg/s 

yH 
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x 

z 

x+x 

z+z 
y+y 

y 

h 

x = weight fraction of glycerine in raffinate 

y = weight fraction of glycerine in extract 

y*= weight fraction of glycerine in extract in equilibrium with x 

z = weight fraction of hydrolysable fat in raffinate 



Consider the changes occurring in the element of column of height h: 

Glycerine transferred from fat to water phase, hyyKaS )*( 

S: sectional area of tower 

a: interfacial area per volume of tower 

K: overall mass transter coefficient 

Rate of destruction of fat by hydrolysis, hSzk 

A glycerine balance over the element h is: 
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Rate of production of glycerine by hydrolysis, whSzk /

k: specific reaction rate constant 

: mass of fat per unit volume of column (730 kg/m3) 

w: kg fat per kg glycetine 

A glycerine balance between the element and the base of the tower is: 
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The glycerine equilibrium between the phases is: 
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Substitute y0 in terms of other variables 
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Simultaneous differential 

equations 

• These are groups of differential equations 

containing more than one dependent 

variable but only one independent variable. 

• In these equations, all the derivatives of the 

different dependent variables are with 

respect to the one independent variable. 

Our purpose: Use algebraic elemination of the variables until only  

one differential equation relating two of the variables remains. 



Elimination of variable 

Independent variable or dependent variables? 
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Elimination of independent variable 
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較少用 

Elimination of one or more dependent variables 

It involves with equations of high order and 

it would be better to make use of matrices 

Solving differential equations simultaneously using 

matrices will be introduced later in the term  



Elimination of dependent variables 
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1.25 kg/s of sulphuric acid (heat capacity 1500 J/kg C) is to be cooled in a two-stage counter- 

current cooler of the following type. Hot acid at 174 C is fed to a tank where it is well stirred in 

contact with cooling coils. The continuous discharge from this tank at 88 C flows to a second 

stirred tank and leaves at 45C. Cooling water at 20 C flows into the coil of the second tank and 

thence to the coil of the first tank. The water is at 80 C as it leaves the coil of the hot acid tank. 

To what temperatures would the contents of each tank rise if due to trouble in the supply, the  

cooling water suddenly stopped for 1h? 

 

On restoration of the water supply, water is put on the system at the rate of 1.25 kg/s. Calculate 

the acid discharge temperature after 1 h. The capacity of each tank is 4500 kg of acid and the  

overall coefficient of heat transfer in the hot tank is 1150 W/m2 C and in the colder tank 

750 W/m2 C. These constants may be assumed constant.  

Example of simultaneous O.D.E.s 



1.25 kg/s 

0.96 kg/s 

88 C 

45 C 

174 C 

20 C 40 C 80 C 

Steady state calculation: Heat capacity of water 4200 J/kg C 
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When water fails for 1 hour, heat balance for tank 1 and tank 2: 

dt

dT
VCMCTMCT 1

10 

dt

dT
VCMCTMCT 2

21 

Tank 1 

Tank 2 

M: mass flow rate of acid 

C: heat capacity of acid 

V: mass capacity of tank 

Ti: temperature of tank i 

dt

dT
TT

dt

dT
TT

2
21

1
10





B.C. 

t = 0, T1 = 88 teT  861741

t = 1, T1=142.4 C 

dt

dT
Te t 2

286174   integral factor, et tetT  )12986(1742

t = 1, T2 = 94.9 C 

B.C. 

t = 0, T2 = 45 



When water supply restores after 1 hour, heat balance for tank 1 and tank 2: 

   
dt

dT
VCMCTtWCMCTtWC ww

2
2213 

Tank 1 

Tank 2 

W: mass flow rate of water 

Cw: heat capacity of water 

t1: temperature of water leaving tank 1 

t2: temperature of water leaving tank 2 

t3: temperature of water entering tank 2 

   
dt

dT
VCMCTtWCMCTtWC ww

1
1102 

1 2 T0 T1 T2 

t3 t2 t1 

Heat transfer rate equations for the two tanks: 
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4 equations have to be 

solved simultaneously 



   
dt

dT
VCMCTtWCMCTtWC ww

2
2213 

   
dt

dT
VCMCTtWCMCTtWC ww

1
1102 
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
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觀察各dependent variable 出現次數, 發現 t1 出現次數最少，先消去！(i.e. t1= ***代入) 

211 )1( ttT  

322 )1( ttT  

wWC

AU

e

11



wWC

AU

e

22
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再由出現次數次少的 t2 消去 

….. 

30975.708.6 2
2

2

2

2

 T
dt

dT

dt

Td

代入各數值 

….. 

B.C. t = 0, T2 = 94.9 C  
同時整理T1 



基本上，1st order O.D.E. 應該都解的出來，方法不外乎： 

Check exact 

Separate variables 

homogenous equations, u = y/x 

equations solvable by an integrating factor 

2nd order 以上的O.D.E Non-linear O.D.E. 

Linear O.D.E. 缺 x 的 O.D.E.,   reduced to 1st O.D.E. 

缺 y 的 O.D.E.,   reduced to 1st O.D.E.   

homogeneous 的 O.D.E., u = y/x 

我們會解的部分 

General solution = complementary solution + particular solution 

我們會解的部分 

constant coefficients 

The method of undetermined coefficients 

The method of inverse operators 

尋找特殊解的方法 variable coefficient? 

用數列解，next course 


