
MAGNETIC MATERIALS 



PARAMAGNETISM 

Paramagnetism occurs in those substances where the 

individual atoms, ions or molecules posses a permanent 

magnetic dipole moments. 

The permanent magnetic moment results from the following 

contributions: 

- The spin or intrinsic moments of the electrons. 

- The orbital motion of the electrons. 

- The spin magnetic moment of the nucleus. 



- Free atoms or ions with a partly filled inner shell: Transition 

elements, rare earth and actinide elements. Mn2+, Gd3+, U4+ 

etc.  

Examples of paramagnetic  materials: 

- Atoms, and molecules possessing an odd number of 

electrons, viz., free Na atoms, gaseous nitric oxide (NO) etc. 

- Metals. 

- A few compounds with an even number of electrons 

including molecular oxygen. 



CLASSICAL THEORY OF PARAMAGNETISM 

In presence of magnetic field, 

potential energy of magnetic 

dipole 
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Where,  is angle between 

magnetic moment and the 

field.  

0   when (minimum)  BV

It shows that dipoles tend to line up with the field. The effect 

of temperature, however, is to randomize the directions of 

dipoles. The effect of these two competing processes is that 

some magnetization is produced.  
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Let us consider a medium containing N magnetic dipoles per 

unit volume each with moment . 



Suppose field B is applied along z-axis, then  is angle made 

by dipole with z-axis. The probability of finding the dipole 

along the  direction is   
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f() is the Boltzmann factor which indicates that dipole is more 

likely to lie along the field than in any other direction.   

The average value of z is given as  
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Where, integration is carried out over the solid angle, whose 

element is d. The integration thus takes into account all the 

possible orientations of the dipoles.  



Substituting z =  cos and d = 2 sin d  
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Let cos = x, then sin d = - dx and Limits -1 to +1 
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Variation of L(a) with a. 

In most practical situations a<<1, 

therefore,  
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The magnetization is given as  
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( N = Number of dipoles per unit volume)   
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This equation is known as CURIE LAW. The susceptibility is 

referred as Langevin paramagnetic susceptibility. Further, 

contrary to the diamagnetism, paramagnetic susceptibility is 

inversely proportional to T 

Above equation is written 

in a simplified form as: 
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