## Nanotechnology A big issue in a small world



## What is Nanotechnology?

It comprises any technological developments on the nanometer scale, usually 0.1 to 100 nm.

One nanometer equals one thousandth of a micrometer or one millionth of a millimeter.
It is also referred as microscopic technology.

#### WHAT IS NANOTECHNOLOGY?

The intentional manufacture of large scale objects whose discrete components are less than a few hundred nanometers wide. Exploits novel phenomena and properties at the nanoscale. Nature employs nanotechnology to build DNA, proteins, enzymes etc. Nanotechnology – Bottom up approach Traditional technology – Top down approach

#### It is the ultimate technology.

#### What does Nano mean?

- "Nano" derived from an ancient Greek word "Nanos" meaning DWARF.
- "Nano" = One billionth of something
  "A Nanometer" = One billionth of a meter
  10 hydrogen atoms shoulder to shoulder
  There are 25 million nms in a single inch.

### VARIOUS MATERIALS IN NANOMETER DIMENSION



Less than a nanometer Individual atoms are up to a few angstroms, or up to a few tenths of a nanometer, in diameter.



Nanometer Ten shoulder-to-shoulder hydrogen atoms (blue balls) span 1 nanometer. DNA molecules are about 2.5 nanometers wide.



Thousands of nanometers Biological cells, like these red blood cells, have diameters in the range of thousands of nanometers.



A million nanometers The pinhead sized patch of this thumb (circled in black) is a million nanometers across.



Billions of nanometers A two meter tall male is two billion nanometers tall.

#### $< NM \rightarrow NM \rightarrow 1000$ 's of NM's $\rightarrow$ Million NM's $\rightarrow$ Billions of NM's

#### NANOMATERIALS WITH DIFFERENT ATOMIC ARRANGEMENTS







#### Buckyball

arbon Ianotube

0,000 times hinner than luman hair



#### **FUTURE AUTOMOBILE**



Nano polymer composites for lightweight high resistance bumpers

Fuel cells with nanocatalysts and membrane technologies

#### NANOMATERIALS IN CURRENT CONSUMER PRODUCTS





Cosmetics, sunscreens Containing zinc oxide and Titanium oxide nanoparticles

Carbon nanotubes

Nano polymer Composites for stain Resistant clothing

### **HEALTH AND MEDICINE**

- Expanding ability to characterize genetic makeup will revolutionize the specificity of diagnostics and therapeutics
  - Nanodevices can make gene sequencing more efficient
- Effective and less expensive health care using remote and in-vivo devices





- New formulations and routes for drug delivery, optimal drug usage
- More durable, rejection-resistant artificial tissues and organs
- Sensors for early detection and prevention

#### SECURITY

- Very high sensitivity, low power sensors for detecting chem/bio/nuclear threats
- Light weight military platforms, without sacrificing functionality, safety and soldier security
  - Reduce fuel needs and logistical requirements
- Reduce carry-on weight of soldier gear
  - Increased functionality per unit weight



### ESTIMATES OF THE POTENTIAL MARKET SIZE



11

Nanotechnology related goods and services – by 2010-2015

Source: National Science Foundation

## SAFETY OF NANOMATERIALS

Environmental impact
Absorption through skin
Respitory ailments
Evidence that carbon nanotubes cause lung infection in mice. Teflon nanoparticles smaller than 50 nm cause liver cancer in mice.

#### **AREAS OF RESEARCH**

 Molecular Self-Assembly – organic, biological, and composites for molecular recognition, sensors, catalysis.
 Sensors – chemical, biological, and radiological agents; - biosensors; gases (O<sub>2</sub>, H<sub>2</sub>).

- Novel nanomaterial synthesis and characterization.
- Lab-on-chip and Lab-on-a-CD.
- Novel nanomaterials derived from biological molecules protein nanotubes, viral scaffolds, bacteriophages.
- Quantum mechanical modeling of nanomaterials.
- Electronic structures and properties of nanoclusters.
- Fluid dynamics in micro- and nano-channels.
- Molecular electronics.
- Toxicity of nanoparticles.

## Molecular Nanotechnology

The term nanotechnology is often used interchangeably with molecular nanotechnology (MNT)

MNT includes the concept of mechanosynthesis.

 MNT is a technology based on positionallycontrolled mechanosynthesis guided by molecular machine systems.

#### Nanotechnology in Field of Electronics

## MiniaturizationDevice Density



## History

#### Richard Feynman

- 1959, entitled `There's Plenty of Room at the Bottom'
- Manipulate atoms and molecules directly
- 1/10<sup>th</sup> scale machine to help to develop the next generation of 1/100<sup>th</sup> scale machine, and so forth.

As things get smaller, gravity would become less important, surface tension molecule attraction would become more important.

## History

- Tokyo Science University professor Norio Taniguchi
  - 1974 to describe the precision manufacture of materials with nanometre tolerances.
- K Eric Drexler
  - 1980s the term was reinvented
  - 1986 book Engines of Creation: The Coming Era of Nanotechnology.
  - He expanded the term into Nanosystems: Molecular Machinery, Manufacturing, and Computation

## Nanomaterial and Devices





# Small Scales Extreme Properties Nanobots

## Self-Assemble

- Nanodevices build themselves from the bottom up.
- Scanning probe microscopy
  - Atomic force microscopes
  - scanning tunneling microscopes
  - scanning the probe over the surface and measuring the current, one can thus reconstruct the surface structure of the material



## **Current Nanotechnology**

#### Stanford University

- extremely small transistor
- two nanometers wide and regulates electric current through a channel that is just one to three nanometers long
- ultra-low-power







#### processors with features measuring 65 nanometers



Gate oxide less than 3 atomic layers thick

Silicon

#### Plasmons

Waves of electrons traveling along the surface of metals They have the same frequency and electromagnetic field as light. Their sub-wavelength require less space. With the use of plasmons information can be transferred through chips at an incredible speed

Nanomaterial modeling and simulation types

▶ What are they? Carbon molecules aligned in cylinder formation ▶ Who discovered them? Researchers at NEC in 1991 ▶ What are some of their uses? Minuscule wires Extremely small devices



$$\hat{B}_{ij} = \frac{B_{ij} + B_{ji}}{2} + P_{ij} \left( N_{i}^{(b)}, N_{ij}^{(m)}, N_{ij}^{(m)} \right). \qquad (5)$$

$$\mathcal{V}^{acc} = \sum_{i} \sum_{j>i} \left[ V_{ij}^{R} + P_{ij} V_{ij}^{NR} \right], \qquad (6)$$
**• total potential of a system**

$$P_{ij} = f(V_{ij}^{R}, V_{ij}^{R}) \prod_{k\neq i,j} f(V_{ik}^{R}, V_{kj}^{R}), \qquad (7)$$

$$f(x, y) = \begin{cases} \exp(-\gamma x^{2} y^{2}), & if x < 0 \text{and} y < 0 \\ 1, & otherwise \end{cases} \qquad (8)$$
**• Adds the NB contribution**

$$P_{inj} = -\frac{\partial V^{acc}}{\partial r_{inj}}. \qquad (9)$$

$$V_{ij}^{NB} = \epsilon_0 \left[ \left( \frac{\sigma}{r_{ij}} \right)^{12} - 2 \left( \frac{\sigma}{r_{ij}} \right)^6 \right]. \tag{10}$$

#### Leonard – Jones potential with von der Waals interaction

$$\Lambda(T) = \frac{V}{k_B T^2} \int_0^\infty dt \,\langle \vec{j}(t) \vec{j}(0) \rangle,\tag{11}$$

#### Geen - Kudo relation

$$\vec{j}(t) = \frac{d}{dt} \sum_{i} \vec{r_i}(t) h_i(t),$$
(12)  
$$h_i(t) = \frac{1}{V} \left( \frac{m_i v_i^2}{2} + \frac{1}{2} \sum_{j} u_{ij} \right).$$
(13)



(15,15)-(10,10) Double-Wall-Nanotube Streching





