Postulates of Special Relativity

The Postulates of Special Relativity

The postulates of relativity as stated by Einstein:

1. Equivalence of Physical Laws

The laws of physics are the same in all inertial frames of reference.
2. Constancy of the Speed of Light

The speed of light in a vacuum, $c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$, is the same in all inertial frames of reference, independent of the motion of the source or the receiver.

The Postulates of Special Relativity

The first postulate is certainly reasonable; it would be hard to discover the laws of physics if it were not true!
But why would the speed of light be constant? It was thought that, like all other waves, light propagated as a disturbance in some medium, which was called the ether. The Earth's motion through the ether should be detectable by experiment. Experiments showed, however, no sign of the ether.

The Postulates of Special Relativity

Other experiments and measurements have been done, verifying that the speed of light is indeed constant in all inertial frames of reference.

With water waves, our measurement of the wave speed depends on our speed relative to the water:

The Postulates of Special Relativity

But with light, our measurements of its speed always give the same result:

The Postulates of Special Relativity

The fact that the speed of light is constant also means that nothing can go faster than the speed of light - it is the ultimate speed limit of the universe.

Variation of mass with velocity and its derivation

B.Tech-I

Dr.S.K.Srivastava

There is variation of mass with velocity in relativity that is mass varies with the velocity when the velocity is comparable with the velocity of the light. Let us derive and discuss the variation of mass with the velocity relation:

Let there are two inertial frames of references S and $S 1 . S$ is the stationary frame of reference and S^{\prime} is the moving frame of reference. At time $t=t^{\prime}=0$ that is in the start, they are at the same position that is Observers O and O^{\prime} coincides. After that S^{\prime} frame starts moving with a uniform velocity v along x axis.

Suppose there are two particles moving in opposite direction in frame S'. velocity of particle A will be u ' and of B will be $-u$ ' according to the observer O^{\prime}. Let us study the velocities and mass of these particles from frame S.

Velocity of A is $u 1$ and B is $u 2$ from frame S and these are given by relativistic addition of velocity relation respectively:
$u 1=\left(u^{\prime}+v\right) /\left(1+u^{\prime} v / c^{2}\right)$
$u 2=\left(-u^{\prime}+v\right) /\left(1-u^{\prime} v / c^{2}\right)$
Let m 1 and m 2 are the mass of A and B from frame S respectively.
As the particles are moving to each other, at certain instant they will collide and momentarily came to rest. But even when they came to rest, they travel with the velocity of the frame S ' that is with v.

According to the law of conservation of momentum:
Momentum before collision = momentum after collision
Thus $m 1 u 1+m 2 u 2=(m 1+m 2) v=m 1 v+m 2 v$
Or $m 1(u 1-v)=m 2(u 2-v)$
Put equations (1) and (2) in above equations, we get
$m 1\left[\left(u^{\prime}+v\right) /\left(1+u^{\prime} v / c^{2}\right)-v\right]=m 2\left[v-\left(-u^{\prime}+v\right) /\left(1-u^{\prime} v / c^{2}\right)\right]$
Then take LCM of terms in the bracket and solve, we get
$\mathrm{m} 1\left[1 /\left(1+u^{\prime} v / c^{2}\right)\right]=m 2\left[1 /\left(1-u^{\prime} v / c^{2}\right)\right]$
or $m 1 / m 2=\left(1+u^{\prime} v / c^{2}\right) /\left(1-u^{\prime} v / c^{2}\right)$

Now square equation (1), then divide both sides by c^{2} and subtract both sides by 1 , we get
$1-u 1^{2} / c^{2}=1-\left[\left(u^{\prime}+v\right) / c /\left(1+u^{\prime} v / c^{2}\right)\right]^{2}$
By taking LCM on RHS and solving, we get
$1-u 1^{2} / c^{2}=\left(1+u^{\prime 2} v^{2} / c^{4}-u^{\prime 2} / c^{2}-v^{2} / c^{2}\right) /\left(1+u^{\prime} v / c^{2}\right)^{2}(4)$
Similarly by squaring equation (2), then dividing both sides by c^{2} and subtracting both sides by 1 , we get
$1-u 2^{2} / c^{2}=\left(1+u^{\prime 2} v^{2} / c^{4}-u^{\prime} 2 / c^{2}-v^{2} / c^{2}\right) /\left(1-u^{\prime} v / c^{2}\right)^{2}(5)$
On dividing equation (5) by (4), we get
$\left(1-u 2^{2} / c^{2}\right) /\left(1-u 1^{2} / c^{2}\right)=\left(1+u^{\prime} v / c^{2}\right)^{2} /\left(1-u^{\prime} v / c^{2}\right)^{2}$

Take square root on both sides
$\left(1-u 2^{2} / c^{2}\right)^{1 / 2} /\left(1-u 1^{2} / c^{2}\right)^{1 / 2}=\left(1+u{ }^{\prime} v / c^{2}\right) /\left(1-u^{\prime} v / c^{2}\right)$
Now compare equations (3) and (6), we get
$\mathrm{m} 1 / \mathrm{m} 2=\left(1-\mathrm{u} 2^{2} / \mathrm{c}^{2}\right)^{1 / 2} /\left(1-\mathrm{u} 1^{2} / \mathrm{c}^{2}\right)^{1 / 2}$
This is more of a complicated result. To make this result simple, let us assume that the particle B is in the state of rest from frame S that is it has zero velocity before collision

Thus u2 $=0$
And $m 2=m 0$
Where $\mathrm{m0}$ is the rest mass of the particle,

Therefore equation (7) becomes
$\mathrm{m} 1 / \mathrm{m} 0=1 /\left(1-\mathrm{u} 1^{2} / \mathrm{c}^{2}\right)^{1 / 2}$
Also assume $u 1=v$ and $m 1=m$
Therefore above equation becomes
$\mathrm{m} / \mathrm{m} 0=1 /\left(1-\mathrm{v}^{2} / \mathrm{c}^{2}\right)^{1 / 2}$
or $m=m o /\left(1-v^{2} / c^{2}\right)^{1 / 2}$
This equation represents the equation of the variation of mass with the velocity.

