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Light is . . . 
•Initially thought to be waves 

•They do things waves do, like diffraction and interference 

•Wavelength – frequency relationship 

•Planck, Einstein, Compton showed us they behave like particles (photons) 

•Energy comes in chunks 

•Wave-particle duality: somehow, they behave like both 

•Photons also carry momentum 

•Momentum comes in chunks 
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Electrons are . . . 
•They act like particles 

•Energy, momentum, etc., come in chunks 

•They also behave quantum mechanically 

•Is it possible they have wave properties as well? 



The de Broglie Hypothesis 

•Two equations that relate the particle-like and 

wave-like properties of light 

E hf

p h 
1924 – Louis de Broglie postulated that these 

relationships apply to electrons as well 

•Implied that it applies to other particles as well 

•de Broglie could simply explain the Bohr quantization condition 

•Compare the wavelength of an electron in hydrogen to the circumference of 

its path 
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Integer number of wavelengths fit around the orbit 



Measuring wave properties of electrons 
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For atomic separations, want distances around 0.3 nm  energies of 10 or so eV 

How can we measure these wave properties? 

•Scatter off crystals, just like we did for X-rays! 

•Complication: electrons change speed inside crystal 

•Work function  increases kinetic energy in the crystal 

•Momentum increases in the crystal 

•Wavelength changes 



The Davisson-Germer Experiment 
Same experiment as scattering X-rays, except 

•Reflection probability from each layer greater 

•Interference effects are weaker 

•Momentum/wavelength is shifted inside the 

material 

•Equation for good scattering identical 

 

d 

 

2 cosd m 

e- 



•Whenever waves encounter a barrier, they get diffracted, 

their direction changes 

•If the barrier is much larger then the waves, the waves 

change direction very little 

•If the barrier is much smaller then the waves, then the effect 

is enormous, and the wave diffracts a lot 

Light waves through a big hole Sound waves through a small hole 
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•Simple waves look like cosines or sines: 

•k is called the wave number 

•Units of inverse meters 

• is called the angular frequency 

•Units of inverse seconds 

•Wavelength  is how far you have to go in space before it repeats 

•Related to wave number k 

•Period T is how long you have to wait in time before it repeats 

•Related to angular frequency  

•Frequency f is how many times per second it repeats 

•The reciprocal of period 

•cos and sin have periodicity 

2 

•If you increase kx by 2, wave 

will look the same 

•If you increase t by 2, 

wave will look the same 
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Simple Waves 

2 f

   

   

, cos

, sin

x t A kx t

x t A kx t

 

 

 

 



pv
T




•The wave moves a distance of one wavelength  in one period T 

•From this, we can calculate the phase velocity denoted vp 

•It is how fast the peaks and valleys move 
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•Real waves are almost always combinations of multiple wavelengths 

•Average these two expressions to get a new wave: 

Adding two waves 
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•This wave has two kinds of oscillations: 

•The oscillations at small scales 

•The “lumps” at large scales 



Analyzing the sum of two waves: 
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Need to derive some 

obscure trig identities: 

•Average these: 

•Substitute: 
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Rewrite wave function: 
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The “uncertainty” of 

two waves 

Our wave is made of two values of k: 

•k is the average value of these two 

•k is the amount by which the two values of 

k actually vary from k  

•The value of k is uncertain by an amount 

k  

k1 k2 

k
k 

k k 

Plotted at 

t = 0 

•Each “lump” is spread out in space also 

•Define x as the distance from the 

center of a lump to the edge 

•The distance is where the cosine 

vanishes 
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First hint of 

uncertainty principle 



Group Velocity 
     c s, ocos kx t k xx tt     

The velocity of little oscillations governed by the first factor 

•Leads to the same formula as before for phase velocity: pv
k




Small scale 

oscillations 

Large scale 

oscillations 

The velocity of big oscillations governed by the second factor  

•Leads to a formula for group velocity: 
gv

k



These need not be the same! 



More Waves One wave 

Two waves 

Three waves 

Five waves 

Infinity waves 

•Two waves allow you to create localized 

“lumps” 

•Three waves allow you to start separating 

these lumps 

•More waves lets you get them farther and 

farther apart 

•Infinity waves allows you to make the other 

lumps disappear to infinity – you have one 

lump, or a wave packet 

•A single lump – a wave packet – looks and 

acts a lot like a particle 



Wave Packets 
•We can combine many waves to separate a “lump” from its neighbors 

•With an infinite number of waves, we can make a wave packet 

•Contains continuum of wave numbers k 

•Resulting wave travels and mostly stays together, 

like a particle 

•Note both k-values and x-values have a spread  

k and x. 



Phase and Group velocity 
Compare to two wave formulas: 

•Phase velocity formula is exactly the same, except 

we simply rename the average values of k and  as 

simply k and   

•Group velocity now involves very closely spaced 

values of k (and ), and therefore we rewrite the 

differences as . . . 
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Phase and Group velocity 
How to calculate them: 

•You need the dispersion relation: the relationship 

between  and k, with only constants in the formula 

•Example: light in vacuum has  
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Theorem: Group velocity 

always equal phase velocity 

doesn’t 
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If the dispersion relation is  = Ak2, 

with A a constant, what are the 

phase and group velocity? 
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The Classical Uncertainty Principle 
•The wave number of a wave packet is not exactly one 

value 

•It can be approximated by giving the central 

value 

•And the uncertainty, the “standard deviation” 

from that value 
•The position of a wave packet is not exactly one value 

•It can be approximated by giving the central value 

•And the uncertainty, the “standard deviation” from 

that value 

k

k k 

x

x x 

These quantities are related: 

•Typically, x k ~ 1 

Precise Relation: 

(proof hard) 
1
2

x k  



Uncertainty in the Time Domain 
Stand and watch a wave go by at one place 

•You will see the wave over a period of time t 

•You will see the wave with a combination of angular frequencies  

•The same uncertainty relationship applies in this domain 
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