Wave- particle duality

Count Loius de Broglie

• Postulated that all objects have a wavelength given by

 $\lambda = h/p$

- λ =wavelength
- h=Planck's constant
- p=momentum of object
- In practice, only really small objects have a sensible wavelength

Wave-Particle duality

- A consequence of the deBroglie hypothesis is that all objects can be thought of as "wavicles": both particles and waves
- This has troubled many philosophically-minded scientists over the years.
- Inescapable if we want to build atomicresolution sensors.

⁽b) After 100 electrons

(c) After 3000 electrons

⁽d) After 70 000 electrons

Heisenberg's "Uncertantity Principle"

Cannot simultaneously measure an object's momentum and position to a better accuracy than ħ/2

 $\Delta p_x \Delta x \ge \hbar/2$

- Direct consequence of waveparticle duality
- Places limitations on sensor accuracy

Electron Diffraction

- Accelerated electrons have wavelength of order 1 Angstrom=1x10⁻¹⁰ m
- Same order as atomic spacing
- Electrons undergo Bragg diffraction at atomic surfaces if the atoms are lined up in planes, (i.e. in a crystal)

Bragg reflection

- Constructive interference when the path length difference is a integer multiple of the wavelengths
- $n\lambda = 2d \sin\theta$
- Detailed description requires heavy (mathematical) Quantum Mechanics.

The diffraction pattern on the left was made by a beam of x rays passing through Diffraction Patterns Patterns electrons passing through the same foil.

- Only certain angles of reflection are allowed.
- The diffracted electrons form patterns.
- In polycrystalline material, these are rings

X-rays on left, electrons on right.