PRODUCTION AND ANALYSIS OF PLANE, CIRCULAR POLARIZATION LIGHT

B.TECH-IST

Part I: Polarization states

LIGHT AS AN ELECTROMAGNETIC WAVE

Light is a transverse wave, an electromagnetic wave
 EM WAVE

Light wave that propagates in the z direction:

$$
\begin{aligned}
& \overrightarrow{\mathrm{E}}_{\mathrm{x}}(\mathrm{z}, \mathrm{t})=\mathrm{E}_{0 \mathrm{x}} \cos (\mathrm{kz}-\omega \mathrm{t}) \overrightarrow{\mathrm{x}} \\
& \overrightarrow{\mathrm{E}}_{\mathrm{y}}(\mathrm{z}, \mathrm{t})=\mathrm{E}_{0 \mathrm{y}} \cos (\mathrm{kz}-\omega \mathrm{t}+\varepsilon) \overrightarrow{\mathrm{y}}
\end{aligned}
$$

Part I: Polarization states

GRAPHICAL REPRESENTATION OF THE EM WAVE (I)

One can go from:
to the equation of an $\overrightarrow{\mathrm{E}}_{\mathrm{y}}(\mathrm{z}, \mathrm{t})=\mathrm{E}_{0 \mathrm{y}} \cos (\mathrm{kz}-\omega \mathrm{t}+\varepsilon) \overrightarrow{\mathrm{y}}$. identities, squaring, adding):

$$
\left(\frac{E_{x}}{E_{0 x}}\right)^{2}+\left(\frac{E_{y}}{E_{0 y}}\right)^{2}-2 \frac{E_{x}}{E_{0 x}} \frac{E_{y}}{E_{0 y}} \cos \varepsilon=\sin ^{2} \varepsilon
$$

Part I: Polarization states

GRAPHICAL REPRESENTATION OF THE EM WAVE (II)

An ellipse can be represented by 4 quantities:

1. size of minor axis
2. size of major axis
3. orientation (angle)
4. sense (CW, CCW)

Light can be represented by 4 quantities...

Part I: Polarization states, linear polarization

VERTICALLY POLARIZED LIGHT

$$
\begin{aligned}
& \overrightarrow{\mathrm{E}}_{\mathrm{x}}(\mathrm{z}, \mathrm{t})=\mathrm{E}_{0 \mathrm{ox}} \cos (\mathrm{kz}-\omega \mathrm{t}) \overrightarrow{\mathrm{x}} \\
& \overrightarrow{\mathrm{E}}_{\mathrm{y}}(\mathrm{z}, \mathrm{t})=\mathrm{E}_{0 \mathrm{y}} \cos (\mathrm{kz}-\omega \mathrm{t}+\varepsilon) \overrightarrow{\mathrm{y}}
\end{aligned}
$$

If there is no amplitude in $x\left(\mathrm{E}_{0 \mathrm{x}}=0\right)$, there is only one component, in y (vertical).

A. Linearly Polarized Light in the Vertical Direction

Part I: Polarization states, linear polarization

POLARIZATION AT 45° (I)

$$
\begin{array}{l|}
\mathrm{E}_{\mathrm{x}}(\mathrm{z}, \mathrm{t})
\end{array}=\mathrm{E}_{0 \mathrm{ox}} \cos (\mathrm{kz}-\omega \mathrm{t}) \overrightarrow{\mathrm{x}},
$$

If there is no phase difference ($\varepsilon=0$) and
$\mathrm{E}_{0 \mathrm{x}}=\mathrm{E}_{0 \mathrm{y}}$, then $\mathrm{E}_{\mathrm{x}}=\mathrm{E}_{\mathrm{y}}$

B. Line arly Polarized Light at 45 Degrees

Part I: Polarization states, linear polarization

POLARIZATION AT 45° (II)

Part I: Polarization states, circular polarization

CIRCULAR POLARIZATION (I)

$$
\begin{aligned}
& \overrightarrow{\mathrm{E}}_{\mathrm{x}}(\mathrm{z}, \mathrm{t})=\mathrm{E}_{0 \mathrm{x}} \cos (\mathrm{kz}-\omega \mathrm{t}) \overrightarrow{\mathrm{x}} \\
& \overrightarrow{\mathrm{E}}_{\mathrm{y}}(\mathrm{z}, \mathrm{t})=\mathrm{E}_{0 \mathrm{y}} \cos (\mathrm{kz}-\omega \mathrm{t}+\varepsilon) \overrightarrow{\mathrm{y}}
\end{aligned}
$$

If the phase difference is $\varepsilon=90^{\circ}$ and $\mathrm{E}_{0 x}=\mathrm{E}_{0 y}$
then: $\mathbf{E}_{x} / \mathbf{E}_{0 x}=\cos \Theta, \quad \mathbf{E}_{y} / \mathbf{E}_{0 y}=\sin \Theta$ and we get the equation of a circle:

$$
\left(\frac{E_{x}}{E_{0 x}}\right)^{2}+\left(\frac{E_{y}}{E_{0 y}}\right)^{2}=\cos ^{2} \Theta+\sin ^{2} \Theta=1
$$

Part I: Polarization states, circular polarization

CIRCULAR POLARIZATION (II)

C. Circ ularly Polarized Light

Part I: Polarization states, circular polarization

CIRCULAR POLARIZATION (III)

Part I: Polarization states, circular polarization... see it now?

CIRCULAR POLARIZATION (IV)

Part I: Polarization states, elliptical polarization

ELLIPTICAL POLARIZATION

D. Elliptically Polanized Light

- Linear + circular polarization $=$ elliptical polarization

Part I: Polarization states, unpolarized light
UNPOLARIZED LIGHT (NATURAL LIGHT)

