Engg. Mathematics-I

Question Bank

1. If
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 & 4 \\ -1 & -3 & -4 \\ 3 & 9 & 12 \end{bmatrix}$, then
(a) Rank of $A = Rank$ of $B = 2$
(b) Rank of $A = Rank$ of $B = 1$
(c) Rank of $A = 2$, Rank of $B = 1$
(d) Rank of $A = 1$, Rank of $B = 2$
2. The eigen values of $\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$ is
(a) $\pm i$
(b) ± 2
(c) ± 1
(d) ± 3
3. The matrix multiplication $\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$
(a) is not defined
(b) equals $\begin{bmatrix} -1 \\ 4 \end{bmatrix}$

(c) equals [4]
(d) is not invertible

4. Which of the following option is false:

(a)
$$AB \neq BA$$

(b) $I^{100} = I$
(c) $(AB)^{-1} = A^{-1}B^{-1}$
(d) None of these
5. If $A = \begin{bmatrix} 1 & 0 & -1 \\ 8 & 2 & 6 \\ 3 & 3 & 0 \end{bmatrix}$, then rank of A is
(a) 0
(b) 1
(c) 2
(d) 3

6. The given matrix is
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \\ 2 & 3 & 0 \end{bmatrix}$$
 is
(a) non-singular matrix
(b) singular matrix
(c) identity matrix

(d) null matrix

7. If
$$u = e^{x^2 + y^2 + z^2}$$
, find u_x, u_y, u_z

Also, prove that $u_{xyz} = 8xyzu$

- 8. If $u = x + \log y$ and $v = \log y$, verify that $JJ^* = 1$.
- 9. Determine the points where the function $x^2y + xy^2 2xy$ has a maximum or a minimum.
- 10. Show that $\vec{r} = \frac{x\,\hat{i} + y\,\hat{j}}{x^2 + y^2}$ is both solenoidal and irrotational.
- **11.** Find the value of $\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{3}{2}\right)$
- 12. Find the approximate value of $[(1.96)^4 + 3(2.12)^4]^{1/6}$
- 13. Define asymptotes with an example.

Also, trace the curve $y^2(a+x) = (a-x)x^2$

14. Test whether $u = \frac{x+y}{x-y}$ and $v = \frac{x}{y}$ are functionally dependent,

and if so, find the relation between them.

15. If $y = x^n \log x$, prove that $y_{n+1} = \frac{n!}{x}$ **16.** If $u = \sec^{-1} \frac{x^5 - y^5}{x^2 + y^2}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3 \cot u$

- 17. If $u = x^2 y e^z$, where x = t, $y = t^2$, $z = \log t$, find $\frac{du}{dt}$ at t = 2.
- **18.** Expand sin (x + y) upto the second degree terms.
- **19.** Expand y^x in powers of (x 1) and (y 1) upto the second degree terms.
- **20.** Expand log $(1 + \sin x)$ in ascending powers of x upto x^4 .
- **21.** Find the area enclosed between the curves $y^2 = 4x$ and $x^2 = 4y$ using double integration.

22. Evaluate $\int_0^1 \int_{1/x}^1 \int_0^{\sqrt{xy}} xyz \, dx \, dy \, dz$

23. Express $\int_0^1 \frac{x}{\sqrt{1-x^4}} dx$ in terms of beta function.

24. Find the inverse of A by elementary row operations:

$$\mathbf{A} = \begin{bmatrix} 4 & -1 & 1 \\ 2 & 0 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$

25. Find the rank of the following matrix by reducing it into echelon form:

$$\begin{bmatrix} 1 & 2 & -5 \\ -4 & 1 & -6 \\ 6 & 3 & -4 \end{bmatrix}$$

26. Test the consistency and solve the following system of equations:

$$x - y - 2z = -2$$

$$3x - y + z = 6$$

$$x - 3y - 4z = -4$$

27. Find the eigen values of A, where

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$

28. Examine the linear dependence of the following vectors. If the vectors are dependent, find the relation between them.

$$X_1 = (3, 1, -4), X_2 = (2, 2, -3), X_3 = (0, -4, 1)$$

29. Verify Cayley Hamilton Theorem for the following matrix:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 3 \\ 0 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \text{ and hence find } \mathbf{A}^{-1}.$$

30. Find the rank of the following matrix by reducing it into the normal form:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix}$$