Engg. Mathematics-I

Question Bank

1. If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 3 & 4 \\ -1 & -3 & -4 \\ 3 & 9 & 12\end{array}\right]$, then
(a) Rank of $\mathrm{A}=$ Rank of $\mathrm{B}=2$
(b) Rank of $\mathrm{A}=$ Rank of $\mathrm{B}=1$
(c) Rank of $\mathrm{A}=2$, Rank of $\mathrm{B}=1$
(d) Rank of $\mathrm{A}=1$, Rank of $\mathrm{B}=2$
2. The eigen values of $\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]$ is
(a) $\pm i$
(b) ± 2
(c) ± 1
(d) ± 3
3. The matrix multiplication $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]$
(a) is not defined
(b) equals $[-1]$
(c) equals $\left[\begin{array}{l}1 \\ 4 \\ 1\end{array}\right]$
(d) is not invertible
4. Which of the following option is false:
(a) $A B \neq B A$
(b) $I^{100}=I$
(c) $(A B)^{-1}=A^{-1} B^{-1}$
(d) None of these
5. If $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 8 & 2 & 6 \\ 3 & 3 & 0\end{array}\right]$, then rank of A is
(a) 0
(b) 1
(c) 2
(d) 3
6. The given matrix is $\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 1 & 2 \\ 2 & 3 & 0\end{array}\right]$ is
(a) non-singular matrix
(b) singular matrix
(c) identity matrix
(d) null matrix
7. If $u=e^{x^{2}+y^{2}+z^{2}}$, find u_{x}, u_{y}, u_{z}.

Also, prove that $u_{x y z}=8 x y z u$
8. If $u=x+\log y$ and $v=\log y$, verify that $\mathrm{JJ}^{*}=1$.
9. Determine the points where the function $x^{2} y+x y^{2}-2 x y$ has a maximum or a minimum.
10. Show that $\vec{r}=\frac{x \hat{\imath}+y \hat{\jmath}}{x^{2}+y^{2}}$ is both solenoidal and irrotational.
11. Find the value of $\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{3}{2}\right)$
12. Find the approximate value of $\left[(1.96)^{4}+3(2.12)^{4}\right]^{1 / 6}$
13. Define asymptotes with an example.

Also, trace the curve $y^{2}(a+x)=(a-x) x^{2}$
14. Test whether $u=\frac{x+y}{x-y}$ and $v=\frac{x}{y}$ are functionally dependent, and if so, find the relation between them.
15. If $y=x^{n} \log x$, prove that $y_{n+1}=\frac{n!}{x}$
16. If $u=\sec ^{-1} \frac{x^{5}-y^{5}}{x^{2}+y^{2}}$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3 \cot u$
17. If $u=x^{2} y \mathrm{e}^{z}$, where $x=\mathrm{t}, y=\mathrm{t}^{2}, z=\log \mathrm{t}$, find $\frac{d u}{d t}$ at $\mathrm{t}=2$.
18. Expand $\sin (x+y)$ upto the second degree terms.
19. Expand y^{x} in powers of $(x-1)$ and $(y-1)$ upto the second degree terms.
20. Expand $\log (1+\sin x)$ in ascending powers of x upto x^{4}.
21. Find the area enclosed between the curves $y^{2}=4 x$ and $x^{2}=4 y$ using double integration.
22. Evaluate $\int_{0}^{1} \int_{1 / x}^{1} \int_{0}^{\sqrt{x y}} x y z d x d y d z$
23. Express $\int_{0}^{1} \frac{x}{\sqrt{1-x^{4}}} d x$ in terms of beta function.
24. Find the inverse of A by elementary row operations:

$$
A=\left[\begin{array}{ccc}
4 & -1 & 1 \\
2 & 0 & -1 \\
1 & -1 & 3
\end{array}\right]
$$

25. Find the rank of the following matrix by reducing it into echelon form:

$$
\left[\begin{array}{ccc}
1 & 2 & -5 \\
-4 & 1 & -6 \\
6 & 3 & -4
\end{array}\right]
$$

26. Test the consistency and solve the following system of equations:

$$
\begin{aligned}
& x-y-2 z=-2 \\
& 3 x-y+z=6 \\
& x-3 y-4 z=-4
\end{aligned}
$$

27. Find the eigen values of A, where

$$
\mathrm{A}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right]
$$

28. Examine the linear dependence of the following vectors. If the vectors are dependent, find the relation between them.

$$
X_{1}=(3,1,-4), X_{2}=(2,2,-3), X_{3}=(0,-4,1)
$$

29. Verify Cayley Hamilton Theorem for the following matrix:

$$
A=\left[\begin{array}{ccc}
2 & 1 & 3 \\
0 & -1 & 0 \\
0 & 2 & 1
\end{array}\right] \text { and hence find } A^{-1}
$$

30. Find the rank of the following matrix by reducing it into the normal form:

$$
\mathrm{A}=\left[\begin{array}{cccc}
1 & 2 & 3 & -2 \\
2 & -2 & 1 & 3 \\
3 & 0 & 4 & 1
\end{array}\right]
$$

