Mathematics Question Bank Calculus

Q. 1 The value of the function
$$f(x) = \lim_{x \to 0} \frac{x^3 + x^2}{2x^3 - 7x^2}$$
 is
(a) 0 (b) $-\frac{1}{7}$
(c) $\frac{1}{7}$ (d) ∞

Q. 2
The
$$\lim_{x \to 0} \frac{\sin \frac{2x}{3}}{x}$$
 is
(a) $\frac{2}{3}$ (b) 1
(c) $\frac{3}{2}$ (d) ∞

Q. 3 The expression
$$\lim_{\alpha \to 0} \frac{x^{\alpha} - 1}{\alpha}$$
 is equal to
(a) log x (b) 0
(c) xlogx (d) ∞

Q. 4
What is the value of
$$\lim_{x \to 0} \frac{e^{x} - (1 + x + \frac{x^{2}}{2})}{x^{3}}$$

(a) 0
(b) $\frac{1}{6}$
(c) $\frac{1}{3}$
(d) 1

Q. 5 The value of
$$\lim_{x \to 0} (\frac{1 - \cos x}{x^2})$$
 is
(a) $\frac{1}{4}$ (b) $\frac{1}{2}$
(c) 1 (d) 2

Q. 6 The value of
$$\lim_{x \to 0} \left(\frac{-sinx}{2sinx + cosx} \right)$$
 is
(a) 0 (b) 2
(c) 3 (d) 1

Q. 7 What is the value of
$$\lim_{n \to \infty} (1 - \frac{1}{n})^{2n}$$

(a) 0 (b) e^{-2}
(c) $e^{-1/2}$ (d) 1

Q. 8 The value of
$$\lim_{x \to \infty} (1 + x^2)^{e^{-x}}$$
 is
(a) 0 (b) 1/2
(c) 1 (d) ∞

 $-\gamma$

Q. 9 What should be the value of λ such that the function defined below is continuous at x = $\pi/2$? Given f(x) = $\begin{cases} \frac{\lambda cosx}{\frac{\pi}{2}-x} & \text{if } x \neq \pi/2 \\ 1 & \text{if } x = \pi/2 \end{cases}$ (a) 0 (b) $2/\pi$

Q. 10 The function y = |2 - 3x|

- (a) is continuous $\forall x \in R$ and differentiable $\forall x \in R$.
- (c) is continuous $\forall x \in R$ and differentiable $\forall x \in R$ except at x=2/3.
- (b) is continuous $\forall x \in R$ and differentiable $\forall x \in R$ except at x=3/2.
- (d) is continuous $\forall x \in R$ except x = 3and differentiable $\forall x \in R$.

Q. 11 Consider the function f(x) = |x| in the interval $-1 < x \le 1$. At the point x = 0, f(x) is

(a) continuous and differentiable(b) non continuous and differentiable(c) continuous and non differentiable(d) neither continuous nor

differentiable

Q. 12 Which of the following functions is continuous at x = 3?

$$I.f(x) = \begin{cases} 2 & if \ x = 3 \\ x - 1 & if \ x > 3 \\ \frac{x + 3}{3} & if \ x < 3 \end{cases}$$

$$II.f(x) = \begin{cases} 4 & if \ x = 3 \\ 8 - x & if \ x \neq 3 \end{cases}$$

$$II.f(x) = \begin{cases} x + 3 & if \ x \le 3 \\ x - 4 & if \ x > 3 \end{cases}$$

$$IV.f(x) = \frac{1}{x^3 - 27} & if \ x \neq 3 \end{cases}$$
(a) I.
(b) II.
(c) III.
(d) IV.

Let the function
$$f(\theta) = \begin{vmatrix} \sin\theta & \cos\theta & \tan\theta \\ \sin\left(\frac{\pi}{6}\right) & \cos\left(\frac{\pi}{6}\right) & \tan\left(\frac{\pi}{6}\right) \\ \sin\left(\frac{\pi}{3}\right) & \cos\left(\frac{\pi}{3}\right) & \tan\left(\frac{\pi}{3}\right) \end{vmatrix}$$
 where $\theta \in \left[\frac{\pi}{6}, \frac{\pi}{3}\right]$ and f'(θ) denote the

derivative of f with respect to θ . Which of the following statements is/are true?

(I) There exists
$$\theta \in (\frac{\pi}{6}, \frac{\pi}{3})$$
 such that f' (θ) = 0.
(II) There exists $\theta \in (\frac{\pi}{6}, \frac{\pi}{3})$ such that f' (θ) \neq 0.

- (a) (I) only (b) (II) only
- (c) Both (I) and (II) (d) Neither (I) nor (II)

Q. 14 The function $f(x) = x \sin x$ satisfies : f' ' (x) + f(x) + t cosx = 0. The value of t is

(a) -2 (b) 2

A rail engine accelerates from its stationary position for 8 seconds and travels a distance of
 Q. 15 280 m. According to the mean value theorem, the speedometer at a certain time during acceleration must read exactly

(c) 75 kmph (d) 126 kmph

Q. 16 A function $f(x) = 1 - x^2 + x^3$ is defined in the closed interval [-1, 1]. The value of x in the open interval (-1, 1) for which the mean value theorem is satisfied, is

Q. 17 If $x = a(\theta + sin\theta)$ and $y = a(1 - \cos \theta)$, then dy/dx will be equal to

(a) $\sin\left(\frac{\theta}{2}\right)$ (b) $\cos\left(\frac{\theta}{2}\right)$ (c) $\tan\left(\frac{\theta}{2}\right)$ (d) $\cot\left(\frac{\theta}{2}\right)$

Q. 18 As x increases from $-\infty$ to ∞ , the function $f(x) = \frac{e^x}{1+e^x}$ (a) monotonically increases (b) monotonically decreases (c) increases to a maximum value and then decreases (d) decreases to a minimum value and then increases Q. 19 Given a function $f(x,y) = 4x^2 + 6y^2 - 8x - 4y + 8$. The optimal value of f(x,y) is

- (a) a minimum equal to 10/3 (b) a maximum equal to 10/3
- (c) a minimum equal to 8/3 (d) is a maximum equal to 8/3

Q. 20	While minimizing the function $f(x)$, necessary and sufficient conditions for a point x_0 to a minima are	
	(a) f' (x_0) > 0 and f' ' (x_0) = 0	(b) f' (x_0) $<$ 0 and f' ' (x_0) = 0
	(c) f' (x_0) = 0 and f' ' (x_0) < 0	(d) f' (x_0) = 0 and f' ' (x_0) $>$ 0
Q. 21	The distance between the origin and the point ne	earest to it on the surface $z^2 = 1 + xy$ is
	(a) 1	(b) √3/2
	(c) $\sqrt{3}$	(d) 2
Q. 22	At x = 0, the function $f(x) = x $ has	
	(a) A minimum	(b) A maximum
	(c) A point of inflexion	(d) Neither a maximum nor minimum
Q. 23	The function $f(x) = 2x - x^2 + 3$ has	
	(a) A maxima at x = 1 and a minima at x = 5	(b) A maxima at x = 1 and a minima at x = -5
	(c) Only a maxima at x =1	(d) Only a minima at x = 1

Q. 24 If the sum of the diagonal elements of a 2 x 2 symmetric matrix is -6, then the maximum possible value of determinant of the matrix is

(a) 9	(b) 8
(c) 25	(d) 10

Q. 25 For a right angled triangle, if the sum of the lengths of the hypotenuse and a side is kept constant, in order to have maximum area of the triangle, the angle between the hypotenuse and the side is

Mathematics Question Bank

(a)
$$12^{\circ}$$
 (b) 36°

(c)
$$60^{\circ}$$
 (d) 45°

Q. 26 The maximum area (in square unit) of a rectangle whose vertices lie on the ellipse $x^2 + 4y^2 = 1$ is

(a) 1	(b) 2

Q. 27 The function $f(x) = 2x^3 - 3x^2 - 36x + 2$ has its maxima at (a) x = -2 only (b) x = 0 only

(c) x = 3 only (d) both x = -2 and x = 3

Q. 28 The minimum value of function $y = x^2$ in the interval [1,5] is

(c) 25 (d) undefined

Q. 29 Consider function $f(x) = (x^2 - 4)^2$ where x is a real number. Then the function has

- (a) only one minimum (b) only two minima
- (c) three minima (d) three maxima

Q. 30 A function $y = 5x^2 + 10x$ is defined over an open interval x = (1,2). At least at one point in this interval, dy/dx is exactly

- (a) 20 (b) 25
- (c) 30 (d) 36

- Q. 31 Consider the function $f(x) = \sin x$ in the interval $x \varepsilon \left[\frac{\pi}{4}, 7\frac{\pi}{4}\right]$. The number and the location(s) of the local minima of this function are
 - (a) One, at $\pi/2$ (b) One, at $3\pi/2$
 - (c) Two, at $\pi/2$ and 3 $\pi/2$ (d) Two, at $\pi/4$ and 3 $\pi/2$

Q. 32 The infinite series $1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$ corresponds to (a) secx (b) e^x (c) cosx (d) $1 + \sin^2 x$

Q. 33 For the function e^{-x} , the linear approximation around x = 2 is

(a) (3	$3 - x)e^{-2}$	(b) 1 - x
(c) [3	$3 + 2\sqrt{2} - (1 + \sqrt{2})x] e^{-2}$	(d) e ⁻²

Q. 34 Which of the following functions would have only odd powers of x in its Taylor's series expansion about the point x = 0

(a)	$\sin(x^3)$	(b) sin (x^2)
(c)	$\cos(x^3)$	(d) $\cos(x^2)$

Q. 35 In the Taylor's series expansion of exp(x) + sin(x) about the point $x = \pi$, the coefficient of $(x - \pi)^2$ is

- (a) $exp(\pi)$ (b) $0.5 exp(\pi)$
- (c) $\exp(\pi) + 1$ (d) $\exp(\pi) 1$

Q. 36 The Taylor's series expansion of $\frac{sinx}{x-\pi}$ at x = π is given by

(a)
$$1 + \frac{(x-\pi)^2}{3!} + \cdots$$
 (b) $-1 - \frac{(x-\pi)^2}{3!} + \cdots$

(c)
$$1 - \frac{(x-\pi)^2}{3!} + \cdots$$
 (d) $-1 + \frac{(x-\pi)^2}{3!} + \cdots$

Q. 37 Let
$$f = y^x$$
. What is $\frac{\partial^2 f}{\partial x \partial y}$ at $x = 2, y = 1$?
(a) 0 (b) log2
(c) 1 (d) 1/log2

Q. 38 Let z = xy log(xy), then

(a)
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 0$$

(b) $y \frac{\partial z}{\partial x} = x \frac{\partial z}{\partial y}$
(c) $x \frac{\partial z}{\partial x} = y \frac{\partial z}{\partial y}$
(d) $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = 0$

Q. 39 The integral $\int_0^{\pi} sin^3\theta d\theta$ is given by

Q. 40 The integral
$$\int_0^{\pi/4} \frac{1-tanx}{1+tanx} dx$$
 evaluates to
(a) 0 (b) 1
(c) log2 (d) $\frac{1}{2}$ log2

Q. 41 Given i =
$$\sqrt{-1}$$
, what is the value of $\int_0^{\pi/2} \frac{\cos x + i \sin x}{\cos x - i \sin x} dx$?
(a) 0 (b) 2

Q. 42 Evaluate $\int_0^\infty \frac{\sin t}{t} dt$

(a)
$$\pi$$
 (b) $\pi/2$

(c)
$$\pi/4$$
 (d) $\pi/8$

Q. 43 Which of the following integrals is unbounded ?

I. $\int_{0}^{\pi/4} tanx \, dx$ II. $\int_{0}^{\infty} \frac{1}{x^{2}+1} \, dx$ III. $\int_{0}^{\infty} xe^{-x} dx$ IV. $\int_{0}^{1} \frac{1}{1-x} dx$ (a) I. (b) II. (c) III. (d) IV.

Q. 44 If for non-zero x, $af(x) + bf(\frac{1}{x}) = \frac{1}{x} - 25$ where $a \neq b$ then $\int_{1}^{2} f(x) dx$ is

(a)
$$\frac{1}{a^2-b^2}[a(log2-25)+\frac{47b}{2}]$$
 (b) $\frac{1}{a^2-b^2}[a(2log2-25)-\frac{47b}{2}]$
(c) $\frac{1}{a^2-b^2}[a(2log2-25)+\frac{47b}{2}]$ (d) $\frac{1}{a^2-b^2}[a(log2-25)-\frac{47b}{2}]$

Q. 45 What is the value of the definite integral,
$$\int_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a-x}} dx$$
?
(a) 0 (b) a/2
(c) a (d) 2a

Q. 46 The value of $\int_0^{\pi/6} \cos^4 3\theta \sin^3 6\theta d\theta$ is

(a) 0 (b) 1/15

Q. 47 The value of the integral
$$\int_0^2 \frac{(x-1)^2 \sin (x-1)}{(x-1)^2 + \cos(x-1)} dx$$
 is

Q. 48 If $\int_0^{2\pi} |xsinx| dx = k\pi$, then the value of k is equal to (a) 3 (b) 4 (c) 6 (d) 0

Q. 49 What is the area of the segment cut off from the parabola $x^2 = 8y$ by the line x-2y + 8 = 0

(a) 36	(b) 45
(c) 48	(d) 25

Q. 50 What is the area common to the circles r = a and $r = 2acos\theta$

(a) 0.524a ²	(b) 0.614a ²
(c) 1.047a ²	(d) 1.228a ²

Q. 51 A path AB in the form of one quarter of a circle of unit radius is shown in the figure. Integration of $(x + y)^2$ on path AB traversed in a counter clockwise sense is

Q. 52 The area enclosed between the curves $y^2 = 4x$ and $x^2 = 4y$ is

(a) 16/3 (b) 8

(c) 32/3 (d) 16

Q. 53 The parabolic arc y = \sqrt{x} , 1 ≤ x ≤ 2 is revolved around the x-axis. The volume of the solid of revolution is

(a)
$$\frac{\pi}{4}$$
 (b) $\frac{\pi}{2}$
(c) $\frac{3\pi}{4}$ (d) $\frac{3\pi}{2}$

Q. 54 The area enclosed between the straight line y = x and the parabola $y = x^2$ in the xy plane is

(a) 1/6	(b) 1/4

- (c) 1/3 (d) 1/2
- Q. 55 Consider an ant crawling along the curve $(x 2)^2 + y^2 = 4$ where x and y are in meters. The ant starts at the point (4, 0) and moves counter clockwise with a speed 1.57 meters/second. The time taken by the ant to reach the point (2, 2) is (in seconds)

(a) 3 (b)	2
-----------	---

Q. 56 The value of the integral of the function $g(x, y) = 4x^3 + 10y^4$ along the straight line segment from the point (0, 0) to the point (1, 2) in the x-y plane is

(b) 35

(c) 40 (d) 56

The volume of an object expressed in spherical co-ordinates is given by

Q. 57

 $V = \int_0^{2\pi} \int_0^{\pi/3} \int_0^1 r^2 \sin \phi dr d\phi d\theta.$ The value of the integral is

(a) $\pi/3$ (b) $\pi/6$

(c) $2\pi/3$ (d) $\pi/4$

Q. 58 Changing the order of integration in the double integral I = $\int_0^8 \int_{x/4}^2 f(x, y) dy dx$ leads to I = $\int_r^s \int_p^q f(x, y) dx dy$. What is q? (a) $\int_r^{a} \int_p^{a} f(x, y) dx dy$. What is q?

Q. 59 By a change of variable x(u, v) = uv, y(u, v) = v/u in a double integral, the integrand f(x, y) changes to $f(uv, v/u)\phi(u, v)$. Then $\phi(u, v)$ is

(a) 2v/u	(b) 2uv
(c) v ²	(d) 1

Q. 60 Consider the shaded triangular region P shown in the figure. What is $\iint_P xydxdy$?

Q. 61 The value of the integral $\int_0^2 \int_0^x e^{x+y} dy dx$

(a)
$$\frac{1}{2}(e-1)$$
 (b) $\frac{1}{2}(e^2-1)^2$
(c) $\frac{1}{2}(e^2-e)$ (d) $\frac{1}{2}(e-\frac{1}{e})^2$

Q. 62 To evaluate the double integral $\int_0^8 (\int_{\frac{y}{2}}^{\frac{y}{2}+1} (\frac{2x-y}{2}) dx) dy$, we make the substitution u =

Q. 63 The volume enclosed by the surface $f(x, y) = e^x$ over the triangle bounded by the lines x = y; x = 0, y = 1 in the xy plane is

Q. 64 The double integral $\int_0^a \int_0^y f(x, y) dx dy$ is equivalent to

(a) $\int_0^x \int_0^y f(x, y) dx dy$	(b) $\int_0^a \int_x^y f(x, y) dx dy$
(c) $\int_0^a \int_x^a f(x, y) dy dx$	(d) $\int_0^a \int_0^a f(x, y) dx dy$

Q. 65 Evaluate
$$\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$$

(a) 1 (b) 4
(c) 0 (d) 9

Q. 66 Evaluate
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xyz dx dy dz$$

(a) 1/48 (b) 48
(c) 1/24 (d) 0

Q. 67 If P, Q, R are three points having co-ordinates (3, -2, -1), (1, 3, 4), (2, 1, -2) in XYZ space, then the distance from the point P to plane OQR, (O being the origin of the co-ordinate system) is given by

Q. 68 The directional derivative of $f(x,y,z) = 2x^2 + 3y^2 + z^2$ at the point P(2, 1, 3) in the direction of the vector a = i - 2k is

- (a) -2.785 (b) -2.145
- (c) -1.789 (d) 1.000

Q. 69 A velocity vector is given as $\vec{V} = 5xy\vec{i} + 2y^2\vec{j} + 3yz^2\vec{k}$. The divergence of this velocity vector at (1, 1, 1) is

(a) 9			(b) 10

(c) 14 (d) 15

Q. 70 For a scalar function $f(x, y, z) = x^2 + 3y^2 + 2z^2$, the gradient at the point P(1, 2, -1) is

(a) $2\vec{i} + 6\vec{j} + 4\vec{k}$ (b) $2\vec{i} + 12\vec{j} - 4\vec{k}$ (c) $2\vec{i} + 12\vec{j} + 4\vec{k}$ (d) $\sqrt{56}$

Q. 71 For the spherical surface $x^2 + y^2 + z^2 = 1$, the unit outward normal vector at the point $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$ is given by

(a)
$$\frac{1}{\sqrt{2}}\vec{i} + \frac{1}{\sqrt{2}}\vec{j}$$
 (b) $\frac{1}{\sqrt{2}}\vec{i} - \frac{1}{\sqrt{2}}\vec{j}$
(c) \vec{k} (d) $\frac{1}{\sqrt{3}}\vec{i} + \frac{1}{\sqrt{3}}\vec{j} + \frac{1}{\sqrt{3}}\vec{k}$

Q. 72 Curl of a vector V(x, y, z) = $2x^2\vec{i} + 3z^2\vec{j} + y^3\vec{k}$ at x = y = z = 1 is

- (a) $-3\vec{i}$ (b) $3\vec{i}$
- (c) $3\vec{\imath} 4\vec{j}$ (d) $3\vec{\imath} 6\vec{k}$

Q. 73 Let \emptyset be an arbitrary smooth real valued scalar function and V be an arbitrary smooth vector valued function in a three dimensional space. Which one of the following is an identity ?

(a)
$$\operatorname{Curl}(\emptyset \vec{V}) = \nabla(\emptyset \operatorname{Div} \vec{V})$$
 (b) $\operatorname{Div} \vec{V} = 0$
(c) $\operatorname{Div} \operatorname{Curl} \vec{V} = 0$ (d) $\operatorname{Div}((\emptyset \vec{V}) = \emptyset \operatorname{Div} \vec{V})$

Q. 74 The magnitude of the directional derivative of the function $f(x,y) = x^2 + 3y^2$ in a direction normal to the circle $x^2 + y^2 = 2$, at the point (1,1), is

(a) $4\sqrt{2}$	(b) 5√ <u>2</u>
(c) 7√ <u>2</u>	(d) 9√2

Q. 75 Consider points P and Q in the xy – plane, with P = (1,0) and Q = (0,1). The line integral $2\int_{P}^{Q} (xdx + ydy)$ along the semicircle with the line segment PQ as its diameter is

(a) -1	(b) 0

- (c) 1 (d) Depends on the direction(clockwise or anticlockwise) of the semicircle.
- Q. 76 Value of the integral $\oint_C (xydy y^2dx)$, where, c is the square cut from the first quadrant by the lines x = 1 and y = 1 will be (use Green's theorem)

(a) 1/2		(b) 1

- (c) 3/2 (d) 5/3
- Q. 77 The value of $\int_C [(3x 8y^2)dx + (4y 6xy)dy]$, (where C is the boundary of the region bounded by x = 0, y = 0 and x + y = 1) is
 - (a) 1.666 (b) 4
 - (c) 0 (d) 20

- Q. 78 Which one of the following describes the relationship among the three vectors, $\vec{i} + \vec{j} + \vec{k}$, $2\vec{i} + 3\vec{j} + \vec{k}$ and $5\vec{i} + 6\vec{j} + 4\vec{k}$?
 - (a) The vectors are mutually (b) The vectors are linearly dependent perpendicular
 - (c) The vectors are linearly independent (d) The vectors are unit vectors

Q. 79 Curl of vector
$$\vec{F} = x^2 z^2 \vec{i} - 2xy^2 z \vec{j} + 2y^2 z^3 \vec{k}$$
 is
(a) $(4yz^3 + 2xy^2)\vec{i} + 2x^2 z \vec{j} - 2y^2 z \vec{k}$ (b) $(4yz^3 + 2xy^2)\vec{i} - 2x^2 z \vec{j} - 2y^2 z \vec{k}$
(c) $2xz^2 \vec{i} - 4xyz \vec{j} + 6x^2 z \vec{k}$ (d) $2xz^2 \vec{i} + 4xyz \vec{j} + 6y^2 z \vec{k}$

Q. 80 The surface integral $\iint_{S} \frac{1}{\pi} (9x\vec{\imath} - 3y\vec{\jmath}) \cdot \vec{n}dS$ over the sphere given by $x^2 + y^2 + z^2 = 9$ is

(a) 200	(b) 220
(c) 186	(d) 216

- Q. 81 If the function $f(x) = \sqrt{x^2 4}$ in [2, 4] satisfies the Lagrenge's mean value theorem, then there exists some $c \in (2, 4)$. What is the value of c
 - (a) 12 (b) 6
 - (c) $\sqrt{2}$ (d) $\sqrt{6}$

Q. 82 The derivative of the function f(x) = sinnx is

- (a) Odd function (b) Constant function
- (c) Even function (d) None of the above

Q. 83 For what value of k, the function
$$f(x,y) = \begin{cases} \frac{\sin^{-1}(xy-2)}{\tan^{-1}(3xy-6)}, (x,y) \neq (1,2) \\ k , (x,y) = (1,2) \end{cases}$$
 is continuous?

Q.

Q. 84 Let
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, x^2 + y^2 \neq 0\\ 0, x = y = 0 \end{cases}$$

(a) $f(x,y)$ is continuous at origin
(b) $f(x,y)$ is not differentiable at origin
(c) $f_x(0,0) = f(0,0)$
(d) $f_y(0,0) = f(0,0)$

85 If
$$f(x,y) = 2x^2 - xy + 2y^2$$
, then at (1, 2)
(a) $\frac{\partial f}{\partial x} = 2$
(b) $\frac{\partial f}{\partial y} = 7$
(c) $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}$
(d) $\frac{\partial f}{\partial x} \neq \frac{\partial f}{\partial y}$

Q. 86 Given the function
$$f(x,y) = x^2 - 2xy + y^2 + x^3 - y^3 + x^5$$
. Then the function has

- (a) Maximum value at origin (b) Minimum value at origin
- (c) Neither maximum nor minimum (d) Maximum value but no minimum value at origin

Q. 87 Given the function
$$f(x,y) = x^3 + y^3 - 63(x + y) + 12xy$$

- (a) The function has four stationary points
- (c) The function is minimum at (3, 3)

(d) The function has neither minimum nor a maximum at (5, -1)

Q. 88
Let
$$f(x,y) = \begin{cases} x^2 + 2y, (x, y) \neq (1,2) \\ 0, (x, y) = (1,2) \end{cases}$$
 then
(a) $f(x,y)$ is continuous at (1, 2)
(b) $f(x,y)$ is discontinuous at (1, 2)
(c) $f(x,y)$ has removable discontinuity at
(1, 2)
(d) $\lim_{(x,y)\to(1,2)} f(x,y)$ does not exist

Q. 89
If
$$f(x,y) = \begin{cases} xytan(\frac{y}{x}), (x, y) \neq (0,0) \\ 0, (x, y) = (0,0) \end{cases}$$
. Then at (0, 0)
(a) $xf_x + yf_y = 2f$
(b) $xf_x - yf_y = 2f$
(c) $yf_x + xf_y = 2f$
(d) $yf_x - xf_y = 2f$

Q. 90 If
$$f(x,y) = x^{y}$$
, then
(a) $f_{x}(a, 0) = 1$, where a is a constant
(b) $f_{y}(e, 0) = 1$
(c) $f_{xy}(1, 0) = 1$
(d) $f_{yx}(1, 1) = 1$

Q. 91 Let the function f be defined as follows $f(x) = \begin{cases} \frac{1}{2^n}, \frac{1}{2^{n+1}} < x \le \frac{1}{2^n}, n = 0, 1, 2 \dots \\ 0, else \end{cases}$ Then $\int_0^1 f(x) dx$ is (a) 1 (b) 0 (c) 2/3 (d) 3/2

Q. 92 The value of integral $\int_0^\infty e^{-x^2} \cos \alpha x \, dx$ is

(a)
$$\frac{1}{2}\sqrt{\pi} e^{-\frac{1}{4}\alpha^2}$$
 (b) $\frac{1}{2}\sqrt{\pi}$
(c) $\sqrt{\pi/6}$ (d) $\frac{1}{2}\alpha^2$

Q. 93 If f is an increasing function, then

- (a) -f is decreasing function (b) -f is increasing function
- (c) –f is constant (d) None of the above

Mathematics Question Bank

Calculus

Q. 94	The function f(x) = $\begin{cases} \frac{\sin x}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$ has		
	(a) Discontinuity of first kind at $x = 0$	(b) Discontinuity of second kind at x = 0	
	(c) Continuity at x = 0	(d) None of the above	
Q. 95	The function sinx ⁿ is		
	(a) differentiable	(b) non-differentiable	
	(c) discontinuous	(d) None of the above	
Q. 96	If $x = a(t + sin t)$, $y = a(1 - cos t)$ then dy/dx a	tt = $\pi/2$ is	
	(a) 2	(b) 1	
	(c) 5	(d) 8	
Q. 97	Let $y = x^{x}$, then dy/dx is equal to		
	(a) $x^{x} (1 + \log x)$	(b) 1 + log x	
	(c) log x	(d) $\frac{\log x}{x}$	
Q. 98	A point on a curve is said to be an extemum if it is a local minimum or a local maximum. The number of distinct exterma for the curve 3x ⁴ – 16x ³ -24x ² +37 is		
	(a) 0	(b) 1	
	(c) 2	(d) 3	

Q. 99

Let $f(x) = xe^{-x}$. The maximum value of the function in the interval $(0, \infty)$ is

(a) e⁻¹ (b) e

(c)
$$1 - e^{-1}$$
 (d) $1 + e^{-1}$

- Q. 100 The length of the curve $y = \frac{2}{3}x^{\frac{3}{2}}$ between x = 0 and x = 1 is (a) 0.27 (b) 0.67
 - (c) 1 (d) 1.22