Data Structures

Trees

Chapter 5 Trees: Outline

Introduction

- Representation Of Trees
- Binary Trees
- Binary Tree Traversals
- Additional Binary Tree Operations
- Threaded Binary Trees

Heaps

- Binary Search Trees
- Selection Trees

Forests

Introduction (1/8)

- A tree structure means that the data are organized so that items of information are related by branches
- Examples:

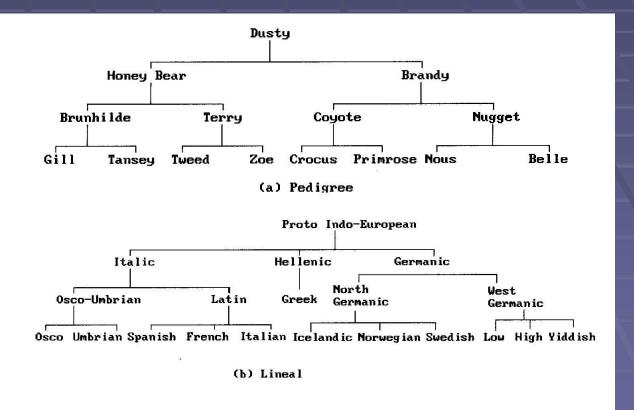


Figure 5.1: Two types of genealogical charts

Introduction (2/8)

- Definition (recursively): A tree is a finite set of one or more nodes such that
 - There is a specially designated node called root.
 - The remaining nodes are partitioned into n>=0 disjoint set T₁,...,T_n, where each of these sets is a tree. T₁,...,T_n are called the *subtrees* of the root.
- Every node in the tree is the root of some subtree

Introduction (3/8)

Some Terminology

- node: the item of information plus the branches to each node.
- degree: the number of subtrees of a node
- degree of a tree: the maximum of the degree of the nodes in the tree.
- terminal nodes (or leaf): nodes that have degree zero
- nonterminal nodes: nodes that don't belong to terminal nodes.
- children: the roots of the subtrees of a node X are the children of X
- parent: X is the parent of its children.

Introduction (4/8)

Some Terminology (cont'd)

- siblings: children of the same parent are said to be siblings.
- Ancestors of a node: all the nodes along the path from the root to that node.
- The *level* of a node: defined by letting the root be at level one. If a node is at level *I*, then it children are at level *I*+1.
- Height (or depth): the maximum level of any node in the tree

Introduction (5/8)

Example is the root node Property: (# edges) = (#nodes) - 1 **B** is the **parent** of D and E C is the sibling of B D and E are the children of B D, E, F, G, I are external nodes, or leaves A, B, C, H are internal nodes The *level* of *E* is 3 The *height (depth)* of the tree is 4 The *degree* of node *B* is *2* The *degree* of the tree is 3 The *ancestors* of node *I* is *A*, *C*, *H* The *descendants* of node *C* is *F*, *G*, *H*, *I*

Level 2 H 3

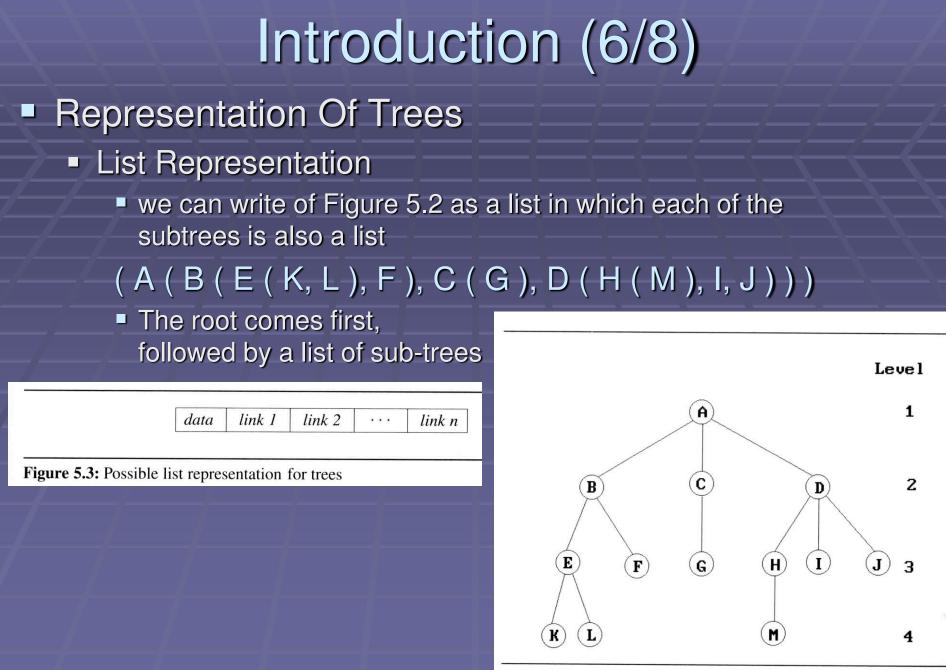


Figure 5.2: A sample tree

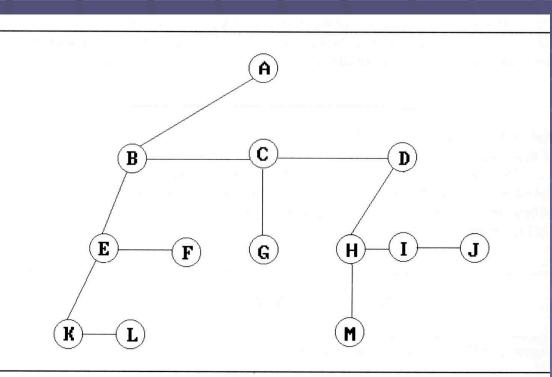
Introduction (7/8)

Representation Of Trees (cont'd)

 Left Child-Right Sibling Representation

data			
left child	right sibling		

Figure 5.4: Left child-right sibling node structure



Introduction (8/8)

Representation Of Trees (cont'd)

Representation
 As A Degree
 Two Tree

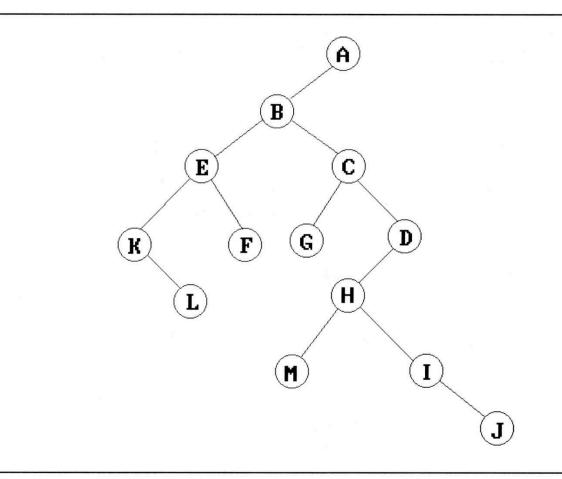


Figure 5.6: Left child-right child tree representation of a tree

Binary Trees (1/9)

- Binary trees are characterized by the fact that any node can have at most two branches
 Definition (recursive):
 - A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called the left subtree and the right subtree
- Thus the left subtree and the right subtree are distinguished

В

B

Any tree can be transformed into binary tree
 by left child-right sibling representation

Binary Trees (2/9) The abstract data type of binary tree

structure Binary_Tree (abbreviated BinTree) is

objects: a finite set of nodes either empty or consisting of a root node, left *Binary_Tree*, and right *Binary_Tree*.

functions:

for all $bt, bt1, bt2 \in BinTree$, item $\in element$

BinTree Create()	::=	creates an empty binary tree
Boolean IsEmpty(bt)	::=	if ($bt ==$ empty binary tree)
		return TRUE else return FALSE
BinTree MakeBT(bt1, item, bt2)	::=	return a binary tree whose left
		subtree is <i>bt</i> 1, whose right
		subtree is <i>bt</i> 2, and whose root
		node contains the data item.
BinTree Lchild(bt)	::=	if (IsEmpty(<i>bt</i>)) return error else
		return the left subtree of bt.
element Data(bt)	::=	if (IsEmpty(bt)) return error else
		return the data in the root node of bt.
BinTree Rchild(bt)	::=	if (IsEmpty(<i>bt</i>)) return error else
		return the right subtree of bt.

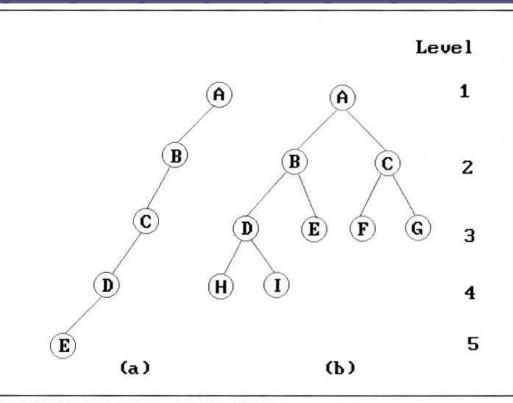
Structure 5.1: Abstract data type *Binary_Tree*

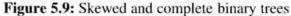
Binary Trees (3/9)

Two special kinds of binary trees:

 (a) skewed tree,
 (b) complete binary tree

 The all leaf nodes of these trees are on two adjacent levels





Binary Trees (4/9)

- Properties of binary trees
 - Lemma 5.1 [Maximum number of nodes]:
 - 1. The maximum number of nodes on level *i* of a binary tree is 2^{i-1} , $i \ge 1$.
 - 2. The maximum number of nodes in a binary tree of depth k is 2^k -1, $k \ge 1$.
 - Lemma 5.2 [Relation between number of leaf nodes and degree-2 nodes]:

For any nonempty binary tree, T, if n_0 is the number of leaf nodes and n_2 is the number of nodes of degree 2, then $n_0 = n_2 + 1$.

These lemmas allow us to define full and complete binary trees

Binary Trees (5/9)

Definition:

- A *full binary tree* of depth k is a binary tree of death k having 2^k-1 nodes, k ≥ 0.
- A binary tree with n nodes and depth k is complete *iff* its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k.
- From Lemma 5.1, the height of a complete binary tree with *n* nodes is \[log_2(n+1) \]

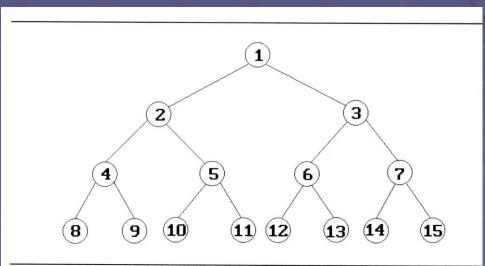
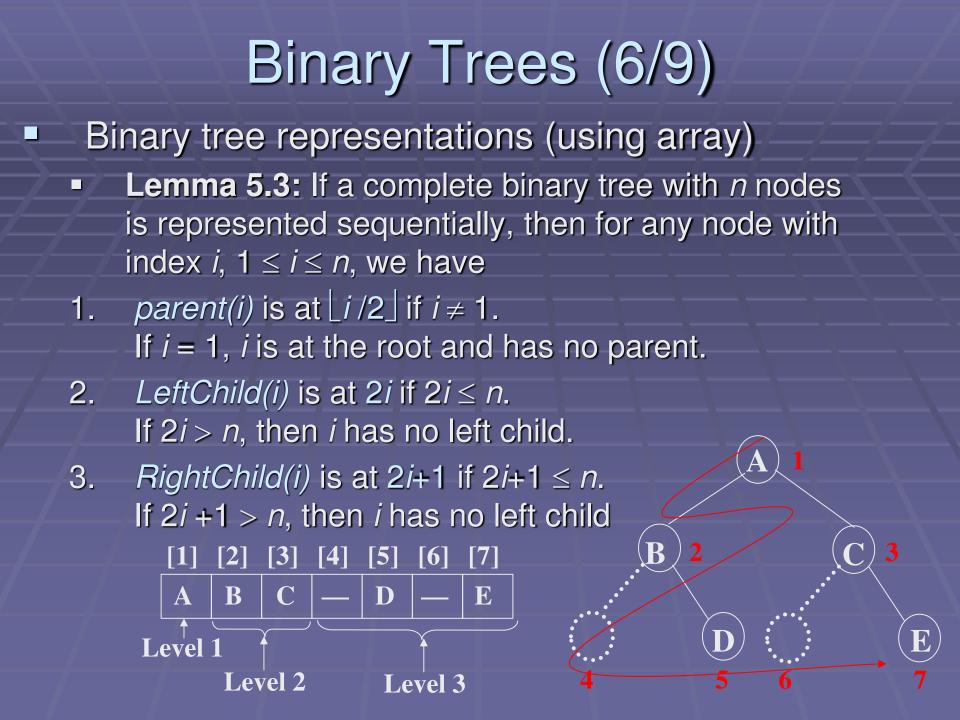


Figure 5.10: Full binary tree of depth 4 with sequential node numbers



Binary Trees (7/9)

Binary tree representations (using array)

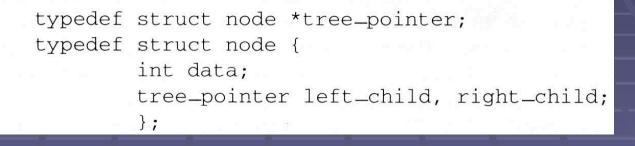
- Waste spaces: in the worst case, a skewed tree of depth k requires 2^k-1 spaces. Of these, only k spaces will be occupied
- Insertion or deletion of nodes from the middle of a tree requires the movement of potentially many nodes to reflect the change in the level of these nodes

[1]	Ĥ	[1]	A
[2]	В	[2]	В
[3]		[3]	С
[4]	С	[4]	D
[5]		[5]	Е
[6]		[6]	F
[7]		[7]	G
[8]	D	[8]	Н
[9]	·	[9]	I
		in my	
•	•		
[9]	D 		

[16]

Binary Trees (8/9)

Binary tree representations (using link)



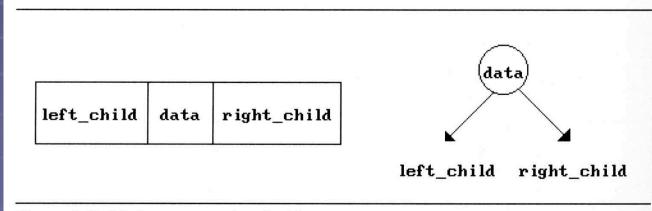


Figure 5.12: Node representation for binary trees

Binary Trees (9/9)

Binary tree representations (using link)

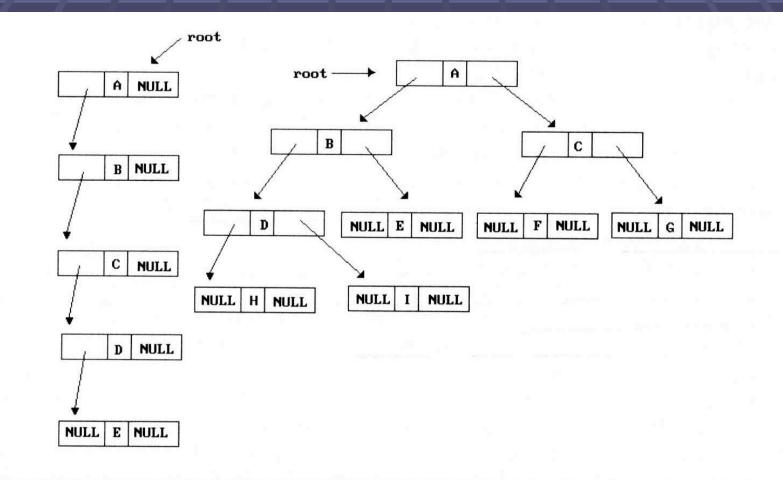
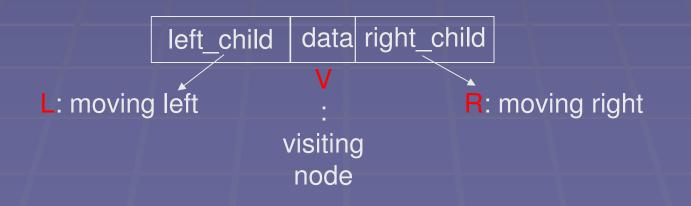


Figure 5.13: Linked representation for the binary trees of Figure 5.9

Binary Tree Traversals (1/9)

How to traverse a tree or visit each node in the tree exactly once?

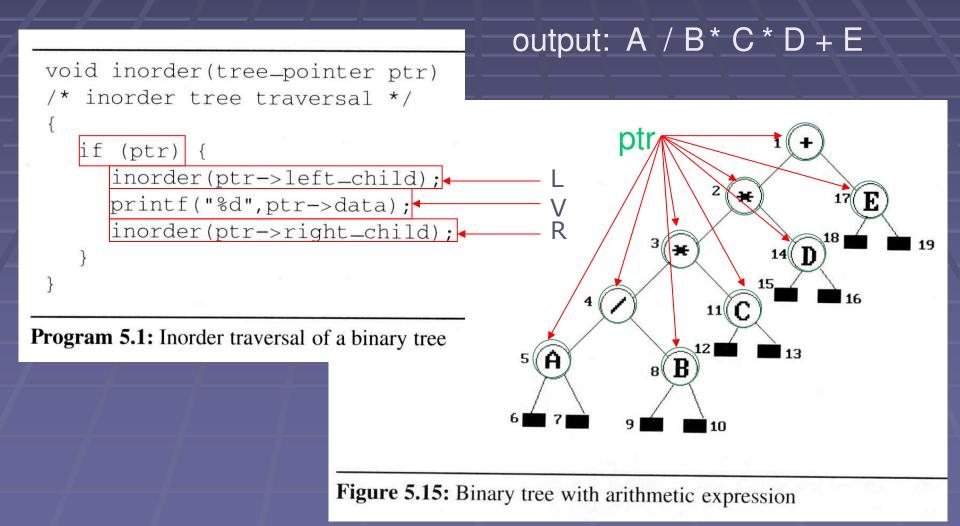
- There are six possible combinations of traversal LVR, LRV, VLR, VRL, RVL, RLV
- Adopt convention that we traverse left before right, only 3 traversals remain
- LVR (inorder), LRV (postorder), VLR (preorder)



Binary Tree Traversals (2/9) Arithmetic Expression using binary tree inorder traversal (infix expression) A / B * C * D + E preorder traversal (prefix expression) + * * / A B C D E postorder traversal × 17 3 × A B / C * D * E + 14 level order traversal 11 + * E * D / C A B 5 Ĥ B

Figure 5.15: Binary tree with arithmetic expression

Binary Tree Traversals (3/9) Inorder traversal (*LVR*) (recursive version)



Binary Tree Traversals (4/9) Preorder traversal (VLR) (recursive version) output: + * * / A B C D E void preorder(tree_pointer ptr) /* preorder tree traversal */ if (ptr) { printf("%d",ptr->data); × preorder(ptr->right_child); × Program 5.2: Preorder traversal of a binary tree

Figure 5.15: Binary tree with arithmetic expression

5 (**A**

R

Binary Tree Traversals (5/9) Postorder traversal (LRV) (recursive version) output: A B / C * D * E + void postorder(tree_pointer ptr) /* postorder tree traversal */ if (ptr) { postorder(ptr->left_child); × postorder(ptr->right_child) +

Program 5.3: Postorder traversal of a binary tree

printf("%d",ptr->data);

R

A

5

×

Figure 5.15: Binary tree with arithmetic expression

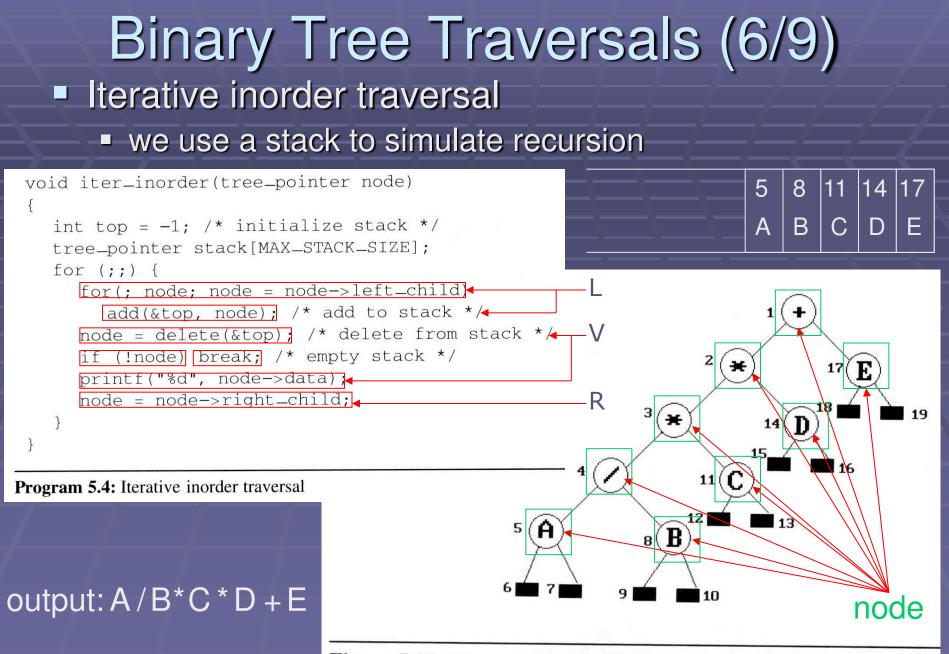


Figure 5.15: Binary tree with arithmetic expression

Binary Tree Traversals (7/9)

- Analysis of inorder2 (Non-recursive Inorder traversal)
 - Let n be the number of nodes in the tree
 - Time complexity: O(n)
 - Every node of the tree is placed on and removed from the stack exactly once
 - Space complexity: O(n)
 - equal to the depth of the tree which (skewed tree is the worst case)

Binary Tree Traversals (8/9)

Level-order traversal

- method:
 - We visit the root first, then the root's left child, followed by the root's right child.
 - We continue in this manner, visiting the nodes at each new level from the leftmost node to the rightmost nodes
- This traversal requires a queue to implement

Binary Tree Traversals (9/9) Level-order traversal (using queue)

