

Data Structures

Trees

Chapter 5 Trees: Outline

 Introduction
 Representation Of Trees

 Binary Trees

 Binary Tree Traversals

 Additional Binary Tree Operations

 Threaded Binary Trees

 Heaps

 Binary Search Trees

 Selection Trees

 Forests

Introduction (1/8)

 A tree structure means that the data are organized

so that items of information are related by branches

 Examples:

Introduction (2/8)

 Definition (recursively): A tree is a finite set of

one or more nodes such that

 There is a specially designated node called root.

 The remaining nodes are partitioned into n>=0 disjoint

set T1,…,Tn, where each of these sets is a tree.

T1,…,Tn are called the subtrees of the root.

 Every node in the tree is the root of some

subtree

Introduction (3/8)

 Some Terminology

 node: the item of information plus the branches to each

node.

 degree: the number of subtrees of a node

 degree of a tree: the maximum of the degree of the

nodes in the tree.

 terminal nodes (or leaf): nodes that have degree zero

 nonterminal nodes: nodes that don’t belong to terminal
nodes.

 children: the roots of the subtrees of a node X are the

children of X

 parent: X is the parent of its children.

Introduction (4/8)

 Some Terminology (cont’d)
 siblings: children of the same parent are said to be

siblings.

 Ancestors of a node: all the nodes along the path

from the root to that node.

 The level of a node: defined by letting the root be at

level one. If a node is at level l, then it children are at

level l+1.

 Height (or depth): the maximum level of any node in
the tree

Introduction (5/8)
 Example

A is the root node
B is the parent of D and E
C is the sibling of B
D and E are the children of B
D, E, F, G, I are external nodes, or leaves
A, B, C, H are internal nodes
The level of E is 3
The height (depth) of the tree is 4
The degree of node B is 2
The degree of the tree is 3
The ancestors of node I is A, C, H

The descendants of node C is F, G, H, I

A

B C

H

I
D E F G

Level

1

2

3

4

Property: (# edges) = (#nodes) - 1

Introduction (6/8)
 Representation Of Trees

 List Representation

 we can write of Figure 5.2 as a list in which each of the
subtrees is also a list

(A (B (E (K, L), F), C (G), D (H (M), I, J)))

 The root comes first,
followed by a list of sub-trees

Introduction (7/8)

 Representation Of

Trees (cont’d)
 Left Child-

Right Sibling

Representation

Introduction (8/8)

 Representation Of Trees (cont’d)
 Representation

As A Degree

Two Tree

Binary Trees (1/9)
 Binary trees are characterized by the fact that

any node can have at most two branches

 Definition (recursive):

 A binary tree is a finite set of nodes that is either

empty or consists of a root and two disjoint binary

trees called the left subtree and the right subtree

 Thus the left subtree and the right subtree are

distinguished

 Any tree can be transformed into binary tree

 by left child-right sibling representation

A

B

A

B

Binary Trees (2/9)
 The abstract data type of binary tree

Binary Trees (3/9)
 Two special kinds of binary trees:

(a) skewed tree, (b) complete binary tree

 The all leaf nodes of these trees are on two adjacent levels

Binary Trees (4/9)
 Properties of binary trees

 Lemma 5.1 [Maximum number of nodes]:

1. The maximum number of nodes on level i of a binary

tree is 2i-1, i 1.

2. The maximum number of nodes in a binary tree of

depth k is 2k-1, k1.

 Lemma 5.2 [Relation between number of leaf

nodes and degree-2 nodes]:

 For any nonempty binary tree, T, if n0 is the number

of leaf nodes and n2 is the number of nodes of

degree 2, then n0 = n2 + 1.

 These lemmas allow us to define full and

complete binary trees

Binary Trees (5/9)

 Definition:

 A full binary tree of depth k is a binary tree of death k

having 2k-1 nodes, k 0.

 A binary tree with n nodes and depth k is complete iff its

nodes correspond to the nodes numbered from 1 to n in

the full binary tree of depth k.

 From Lemma 5.1, the

height of a complete

binary tree with n nodes

is log2(n+1)

Binary Trees (6/9)
 Binary tree representations (using array)

 Lemma 5.3: If a complete binary tree with n nodes

is represented sequentially, then for any node with

index i, 1 i n, we have

1. parent(i) is at i /2 if i 1.

 If i = 1, i is at the root and has no parent.

2. LeftChild(i) is at 2i if 2i n.

 If 2i n, then i has no left child.

3. RightChild(i) is at 2i+1 if 2i+1 n.

 If 2i +1 n, then i has no left child
[1] [2] [3] [4] [5] [6] [7]

A B C — D — E

Level 1

Level 2 Level 3

 A

 B

 D

 C

 E

1

2 3

4 5 6 7

Binary Trees (7/9)
 Binary tree representations (using array)

 Waste spaces: in the worst case, a skewed tree of depth

k requires 2k-1 spaces. Of these, only k spaces will be

occupied

 Insertion or deletion

of nodes from the

middle of a tree

requires the

movement of

potentially many nodes

to reflect the change in

the level of these nodes

Binary Trees (8/9)

 Binary tree representations (using link)

Binary Trees (9/9)
 Binary tree representations (using link)

Binary Tree Traversals (1/9)

 How to traverse a tree or visit each node in the

tree exactly once?

 There are six possible combinations of traversal

LVR, LRV, VLR, VRL, RVL, RLV

 Adopt convention that we traverse left before

right, only 3 traversals remain

LVR (inorder), LRV (postorder), VLR (preorder)

 data right_child left_child

L: moving left R: moving right
V
:

visiting
node

Binary Tree Traversals (2/9)

 Arithmetic Expression using binary tree

 inorder traversal (infix expression)

 A / B * C * D + E

 preorder traversal (prefix expression)

 + * * / A B C D E

 postorder traversal

(postfix expression)

 A B / C * D * E +

 level order traversal

 + * E * D / C A B

Binary Tree Traversals (3/9)
 Inorder traversal (LVR) (recursive version)

L

V
R

ptr

output: A / B * C * D + E

Binary Tree Traversals (4/9)

 Preorder traversal (VLR) (recursive version)

V
L

R

output: A / B * C * D + E

Binary Tree Traversals (5/9)

 Postorder traversal (LRV) (recursive version)

L
R
V

output: A / B * C * D + E

Binary Tree Traversals (6/9)
 Iterative inorder traversal

 we use a stack to simulate recursion

L

V

R

1

+

node output: A / B * C * D + E

2

*

3

*

4

/

5

A

8

B

11

C

14

D

17

E

Binary Tree Traversals (7/9)

 Analysis of inorder2 (Non-recursive Inorder

traversal)

 Let n be the number of nodes in the tree

 Time complexity: O(n)

 Every node of the tree is placed on and removed
from the stack exactly once

 Space complexity: O(n)

 equal to the depth of the tree which

(skewed tree is the worst case)

Binary Tree Traversals (8/9)

 Level-order traversal

 method:

 We visit the root first, then the root’s left child, followed by the
root’s right child.

 We continue in this manner, visiting the nodes at each new
level from the leftmost node to the rightmost nodes

 This traversal requires a queue to implement

Binary Tree Traversals (9/9)
 Level-order traversal (using queue)

FIFO

1

+

ptr

output: A / B * C * D + E

2

*

17

E

3

*

14

D

4

/

11

C

5

A

8

B

