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Introduction (1/8) 

 A tree structure means that the data are organized 

so that items of information are related by branches 

 Examples: 



Introduction (2/8) 

 Definition (recursively): A tree is a finite set of 

one or more nodes such that 

 There is a specially designated node called root. 

 The remaining nodes are partitioned into n>=0 disjoint 

set T1,…,Tn, where each of these sets is a tree. 

T1,…,Tn are called the subtrees of the root. 

 Every node in the tree is the root of some 

subtree 



Introduction (3/8) 

 Some Terminology 

 node: the item of information plus the branches to each 

node. 

 degree: the number of subtrees of a node 

 degree of a tree: the maximum of the degree of the 

nodes in the tree. 

 terminal nodes (or leaf): nodes that have degree zero 

 nonterminal nodes: nodes that don’t belong to terminal 
nodes. 

 children: the roots of the subtrees of a node X are the 

children of X 

 parent: X is the parent of its children. 



Introduction (4/8) 

 Some Terminology (cont’d) 
 siblings: children of the same parent are said to be 

siblings. 

 Ancestors of a node: all the nodes along the path 

from the root to that node. 

 The level of a node: defined by letting the root be at 

level one. If a node is at level l, then it children are at 

level l+1. 

 Height (or depth): the maximum level of any node in 
the tree 



Introduction (5/8) 
 Example 

A is the root node 
B is the parent of D and E 
C is the sibling of B 
D and E are the children of B 
D, E, F, G, I are external nodes, or leaves 
A, B, C, H are internal nodes 
The level of E is 3 
The height (depth) of the tree is 4 
The degree of node B is 2 
The degree of the tree is 3 
The ancestors of node I is A, C, H 

The descendants of node C is F, G, H, I 
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Property: (# edges) = (#nodes) - 1 



Introduction (6/8) 
 Representation Of Trees 

 List Representation 

 we can write of Figure 5.2 as a list in which each of the 
subtrees is also a list 

( A ( B ( E ( K, L ), F ), C ( G ), D ( H ( M ), I, J ) ) ) 

 The root comes first,  
followed by a list of sub-trees 



Introduction (7/8) 

 Representation Of  

Trees (cont’d) 
 Left Child- 

Right Sibling  

Representation 



Introduction (8/8) 

 Representation Of Trees (cont’d) 
 Representation  

As A Degree  

Two Tree 



Binary Trees (1/9) 
 Binary trees are characterized by the fact that 

any node can have at most two branches 

 Definition (recursive): 

 A binary tree is a finite set of nodes that is either 

empty or consists of a root and two disjoint binary 

trees called the left subtree and the right subtree 

 Thus the left subtree and the right subtree are 

distinguished 

 

 

 Any tree can be transformed into binary tree 

 by left child-right sibling representation 
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B 
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Binary Trees (2/9) 
 The abstract data type of binary tree 



Binary Trees (3/9) 
 Two special kinds of binary trees:  

(a) skewed tree, (b) complete binary tree 

 The all leaf nodes of these trees are on two adjacent levels 



Binary Trees (4/9) 
 Properties of binary trees 

 Lemma 5.1 [Maximum number of nodes]: 

1. The maximum number of nodes on level i of a binary 

tree is 2i-1, i 1. 

2. The maximum number of nodes in a binary tree of 

depth k is 2k-1, k1. 

 Lemma 5.2 [Relation between number of leaf 

nodes and degree-2 nodes]: 

 For any nonempty binary tree, T, if n0 is the number 

of leaf nodes and n2 is the number of nodes of 

degree 2, then n0 = n2 + 1. 

 These lemmas allow us to define full and 

complete binary trees 



Binary Trees (5/9) 

 Definition: 

 A full binary tree of depth k is a binary tree of death k 

having 2k-1 nodes, k  0. 

 A binary tree with n nodes and depth k is complete iff its 

nodes correspond to the nodes numbered from 1 to n in 

the full binary tree of depth k. 

 From Lemma 5.1, the  

height of a complete  

binary tree with n nodes  

is log2(n+1) 



Binary Trees (6/9) 
 Binary tree representations (using array) 

 Lemma 5.3: If a complete binary tree with n nodes 

is represented sequentially, then for any node with 

index i, 1  i  n, we have 

1.  parent(i) is at i /2 if i  1.  

 If i = 1, i is at the root and has no parent. 

2.  LeftChild(i) is at 2i if 2i  n.  

 If 2i  n, then i has no left child. 

3.  RightChild(i) is at 2i+1 if 2i+1  n.  

 If 2i +1  n, then i has no left child 
[1] [2] [3] [4] [5] [6] [7] 

A     B     C    —    D    —    E 

Level 1 

Level 2 Level 3 
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Binary Trees (7/9) 
 Binary tree representations (using array) 

 Waste spaces: in the worst case, a skewed tree of depth 

k requires 2k-1 spaces. Of these, only k spaces will be 

occupied 

 Insertion or deletion  

of nodes from the  

middle of a tree  

requires the  

movement of  

potentially many nodes  

to reflect the change in  

the level of these nodes 



Binary Trees (8/9) 

 Binary tree representations (using link) 



Binary Trees (9/9) 
 Binary tree representations (using link) 



Binary Tree Traversals (1/9) 

 How to traverse a tree or visit each node in the 

tree exactly once? 

 There are six possible combinations of traversal 

LVR, LRV, VLR, VRL, RVL, RLV 

 Adopt convention that we traverse left before  

right, only 3 traversals remain 

LVR (inorder), LRV (postorder), VLR (preorder) 

 data right_child left_child 

L: moving left R: moving right 
V 
: 

visiting 
node 



Binary Tree Traversals (2/9) 

 Arithmetic Expression using binary tree 

 inorder traversal (infix expression) 

 A / B * C * D + E 

 preorder traversal (prefix expression) 

 + * * / A B C D E 

 postorder traversal  

(postfix expression) 

 A B / C * D * E + 

 level order traversal 

 + * E * D / C A B 



Binary Tree Traversals (3/9) 
 Inorder traversal (LVR) (recursive version) 

L 

V 
R 

ptr 

output: A / B * C * D + E 



Binary Tree Traversals (4/9) 

 Preorder traversal (VLR) (recursive version) 

V 
L 

R 

output: A / B * C * D + E 



Binary Tree Traversals (5/9) 

 Postorder traversal (LRV) (recursive version) 

L 
R 
V 

output: A / B * C * D + E 



Binary Tree Traversals (6/9) 
 Iterative inorder traversal  

 we use a stack to simulate recursion 

L 

V 

R 
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node output: A / B * C * D + E 

2 

* 

3 

* 

4 

/ 

5 

A 

8 

B 

11 

C 

14 

D 

17 

E 



Binary Tree Traversals (7/9) 

 Analysis of inorder2 (Non-recursive Inorder 

traversal) 

 Let n be the number of nodes in the tree 

 Time complexity: O(n) 

 Every node of the tree is placed on and removed  
from the stack exactly once 

 Space complexity: O(n) 

 equal to the depth of the tree which  

(skewed tree is the worst case) 



Binary Tree Traversals (8/9) 

 Level-order traversal 

 method: 

 We visit the root first, then the root’s left child, followed by the 
root’s right child.  

 We continue in this manner, visiting the nodes at each new 
level from the leftmost node to the rightmost nodes 

 This traversal requires a queue to implement 



Binary Tree Traversals (9/9) 
 Level-order traversal (using queue) 

FIFO 
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