Data Structures

Trees



Chapter 5 Trees: Outline

Introduction
= Representation Of Trees

Binary Trees

Binary Tree Traversals

Additional Binary: Tree Operations
Threaded Binary Trees

Heaps

Binary Search Trees

Selection Trrees

Forests



Introduction (1/8)

= A tree structure means that the data are organized
so that Iitems of information are related by branches

= Examples:

Honey Bear

Brunhilde Terry Coyote

Gill Tansey Tweed Zoe Crocus Primrose Nous

(a) Pediqree

Proto Indo—European
Italic Hellenic
North
Osco—Umbrian i

Osco Umbrian Spanish French Italian Icelandic Noruegian Suwedish Low High Yiddish

(b) Lineal

Figure 5.1: Two types of genealogical charts




Introduction (2/8)

= Definition (recursively): A treeis a finite set of
One or more nodes such that
= There Is a specially designated node called root.

= [he remaining nodes are partitioned into. n~>=0 disjoint
set I,..., I, where each of these sets Is a tree.
I5,..., T, are called the subtrees of the root.
= Every node in the tree Is the root ofi'some

subtree



Introduction (3/8)

= Some Terminology

= node: the item of information plus the branches to each
node.

= degree: the number of subtrees of a node

= degree of a tree: the maximum of the degree of the
nodes in the tree.

= terminal nodes (or leaf): nodes that have degree zero

* nonterminal nodes: nodes that don't belong to terminal
nodes.

= children: the roots of the subtrees of a node X are the
children of X

= parent. X Is the parent of its children.



Introduction (4/8)

= Some Terminology (cont'd)
= siblings: children of the same parent are said to be
siblings.
* Ancestors of a node: all the nodes along the path
from the root to that node.

* The level of a node: defined by letting the root be at
level one. If'a node s at level [, then it children are at
level [+ 1.

= Height (or depth): the maximum level of any node in
the tree



Introduction (5/8)

= Example
s the node . _ _
is the of Dand E R s)={ S) -
IS the of B
and are the of B
are , Or
are
The of is Level
The of the tree is
The of node is 1
The of the tree is
The of node is )
The of node s




Introduction (6/8)

m Representation Of Trees

= | ist Representation

= we can write of Figure 5.2 as a list in which each of the
subtrees is also a list

(A(B(E(K L), F),C(G),D(H(M) I, J)))

= [he root comes first,
followed by a list of sub-trees

doa | Gk T ] Gk | | fnkn ]

Figure 5.3: Possible list representation for trees

Figure 5.2: A sample tree



Introduction (7/8)

= RBepresentation Of

Trees (cont'd)
= | eft Child-
Right Sibling
Representation

Figure 5.4: Left child-right sibling node structure

Figure 5.5: Left child-right sibling representation of a tree



Introduction (8/8)

= Representation Of Trees (cont'd)

= Representation
As A Degree
Two Tree

Figure 5.6: Left child-right child tree representation of a tree




Binary Trees (1/9)

= Binary trees are characterized by the fact that
any node can have at most two branches
= Definition (recursive):
= A binary treeis a finite set of nodes that is either

empty or consists of a root and two disjoint binary
trees called the left subtree and the right subtree

= Thus the left subtree and the right subtree are
distinguished

= Any tree can be transiormed intoe: binary. tree
= py left child-right sibling representation



Binary Trees (2/9)

= [he abstract data type of binary. tree

structure Binary_Tree (abbreviated BinTree) is
objects: a finite set of nodes either empty or consisting of a root node, left
Binary_Tree, and right Binary_Tree.
functions:
for all bt,bt1,bt2 € BinTree, item € element

BinTree Create() ::=  creates an empty binary tree
Boolean IsEmpty(bt) = if (bt == empty binary tree)
return 7RUE else return FALSE
BinTree MakeBT(bt1, item, bt2)  :: return a binary tree whose left
subtree is b1, whose right
subtree is br2, and whose root
node contains the data item.
BinTree Lchild(bt) o if (ISEmpty(bt)) return error else
return the left subtree of br.
element Data(bt) & if (ISEmpty(bt)) return error else
return the data in the root node of br.
BinTree Rchild(br) z if (ISEmpty(bt)) return error else
return the right subtree of bz.

Structure 5.1: Abstract data type Binary_Tree




Binary Trees (3/9)

= Two special kinds of binary trees:
(a) skewed tree, (b) complete binary tree

* The all leaf nodes of these trees are on two adjacent levels

Figure 5.9: Skewed and complete binary trees




Binary Trees (4/9)

= Properties of binary trees
* Lemma 5.1 [Maximum number of hodes]:

1. The maximum number of nodes on level / of a binary
tree is 21, [ >1.

2. The maximum numiber of nodes in a binary. tree of
depth kis 21, k>1.

» Lemma 5.2 [Relation between number of leaf
nodes and degree-2 nodes]:

For any nonempty binary tree; T, if 0, IS the number
of'leafinedes and n, IS the number of nNodes of
degree 2, then ny =N, + 1.
= These lemmas allow us to define full and
complete binary. trees



Binary Trees (5/9)

= Definition:
= A full binary tree of depth ks a binary tree of death k
having 2%-1 nodes, k > 0.

= A binary tree with n nodes and depth k is complete iff its
nodes correspond to the nodes numibered from 1 to n in
the full binary tree of depth k.

= From Lemma 5.1, the
height ofia complete

pinary tree with n nodes Lz{ \

is [log,(a+1)]] > = .
4 5 (6)
A ARSN

Figure 5.10: Full binary tree of depth 4 with sequential node numbers




Binary Trees (6/9)

= Binary tree representations (using array)

= Lemma 5.3: If a complete binary tree with n nodes
IS represented sequentially, then for any node with
index I, 1 < /< n, we have
1. parent(i)is at|i/2]if i=1.
It/ =1, i'is at the root and has no parent.
2. LeftChild(i) is at 2/if 2/ < n.
It 21> n, then [ has no left child.
3. RightChild(i) is at 2/+1 if 2/+1 < n.
If 2/ +1 > n, then i has no left child
[1] [2] [3] [4] [S] [6] [7]
A|B|C|—|D|—|E

)\ /)
Y

T N
Level 1
Level 2 Level 3



Binary Trees (7/9)

= Binary tree representations (using array)

= \Waste spaces: in the worst case, a skewed tree of depth
k requires 2%-1 spaces. Of these, only k spaces will be
occupied

= |nsertion or deletion
of nodes from the
middle of a tree
requires the
movement of
potentially many nedes
o reflect the change in
the level of these nodes

Figure 5.11: Array representation of binary trees of Figure 5.9



Binary Trees (8/9)

= Binary tree representations (using link)

typedef struct node *tree_pointer;
typedef struct node {
int data;
tree_pointer left_child, right—child;

b &

left_child right_child

left_child right_child

Figure 5.12: Node representation for binary trees




Binary Trees (9/9)

= Binary tree representations (using link)

/,

/

f
/

NULL NULL

v
I

Figure 5.13: Linked representation for the binary trees of Figure 5.9



Binary Tree Traversals (1/9)

= How to traverse a tree or visit each node in the

tree exactly once?

= There are six possible combinations of traversal

LVR, LRV, VLR, VRL, RVL, RLV

= Adopt convention that we traverse left before
right, only 3 traversals remain

L R (. orden), LR ( order), LB (. -order)
left_child | data| right_child
i I
: moving left : : moving right
visiting

node



Binary Tree Traversals (2/9)

= Arithmetic Expression using binary tree
* inorder traversal
A/B*C*D+E
= preorder traversal
+**/ABCDE
= postorder traversal

AB/C*D*E+
= |evel order traversal
+*E*D/CAB

Figure 5.15: Binary tree with arithmetic expression




Binary Tree Traversals (3/9)

= |norder traversal (LVR) (recursive version)
output: A/ B*C*D+E

void inorder (tree—_pointer ptr)
/* 1inorder tree traversal */

LE (BUE)| 1

inorder (ptr—>left_child) ;l«
printf ("%d",ptr—>data) ;[
inorder (ptr—>right_child) ;le——

Figure 5.15: Binary tree with arithmetic expression




Binary Tree Traversals (4/9)

= Preorder traversal (VLR) (recursive version)
output: + ** /ABCDE

vold preorder (tree_pointer ptr)
/* preorder tree traversal */
{
if (ptr) {
printf ("%d",ptr—>data) ; <
preorder (ptr—>left_child) ;

preorder (ptr—>right-child);«— R
}
}

Program 5.2: Preorder traversal of a binary tree

Figure 5.15: Binary tree with arithmetic expression




Binary Tree Traversals (5/9)

= Postorder traversal (LRV) (recursive version)
output: AB/ C*D*E +

vold postorder (tree_pointer ptr)
/* postorder tree traversal */
{
if (ptr) |
postorder (ptr—>left_child) s
postorder (ptr—>right_—child) e—
printf ("%d",ptr—>data) ;¢
}
1

Program 5.3: Postorder traversal of a binary tree

Figure 5.15: Binary tree with arithmetic expression




Binary Tree Traversals (6/9)

" |terative Inorder traversal
= We use a stack to simulate recursion

void iter—inorder (tree—pointer node)
{
int top = -1; /* initialize stack */
tree_pointer stack[MAX_STACK-SIZE];
t6x L¥z)- 4
lfor (; node; node = node—>left_child}e
ladd (&top, node); /* add to stack *k—————J
lhode = delete(&top)] /* delete from stack * /e
Af (Tnode)][break;] /* empty stack */
printf ("sd", node—>data) je
lhode = node—>right_child;le

}

Program 5.4: Iterative inorder traversal

@y B

—— 8
6‘ 7; 9

\
N 10

output: A/B*C*D +E

Figure 5.15: Binary tree with arithmetic expression




Binary Tree Traversals (7/9)

= Analysis of inorder2 (Non-recursive Inorder
traversal)
= | et nbe the number of nodes In the tree
= Time complexity: O(n)

= Every node of the tree is placed on and removed
from the stack exactly once

= Space complexity: O(n)

= cqual to the depth of the tree which
(skewed tree Is the worst case)



Binary Tree Traversals (8/9)

= | evel-order traversal

= method:

= \We visit the root first, then the root’s left child, followed by the
root’s right child.

= We continue Iin this manner, visiting the nodes at each new
level from the leftmost node to the rightmost nodes

= This traversal reguires a queue to Implement



Binary Tree Traversals (9/9)
= | evel-order traversal (using queue)

void level_order (tree_pointer ptr) Output- +*E*D/C AB

/* level order tree traversal */

{

int front = rear = 0; 2 1173
tree_pointer queue[MAX_QUEUE_SIZE]; * *

if (!ptr) return; /* empty tree */ E

addg (front, &rear, ptr):

LSE (z7) o

ptr = deleteqg(&front, rear);

if (ptr)| {

e brintf("%d",ptr—>data)J
pf(ptr—>1eft_child)

FIFO < laddq (front, &rear,ptr—>left_child) i
if (ptr—>right_child]

. pddq(front,&rear,ptr—>right_child);

}

else break|

}
}

Program 5.5: Level order traversal of a binary tree




