

Data Structures

Trees

Chapter 5 Trees: Outline

 Introduction
 Representation Of Trees

 Binary Trees

 Binary Tree Traversals

 Additional Binary Tree Operations

 Threaded Binary Trees

 Heaps

 Binary Search Trees

 Selection Trees

 Forests

Introduction (1/8)

 A tree structure means that the data are organized

so that items of information are related by branches

 Examples:

Introduction (2/8)

 Definition (recursively): A tree is a finite set of

one or more nodes such that

 There is a specially designated node called root.

 The remaining nodes are partitioned into n>=0 disjoint

set T1,…,Tn, where each of these sets is a tree.

T1,…,Tn are called the subtrees of the root.

 Every node in the tree is the root of some

subtree

Introduction (3/8)

 Some Terminology

 node: the item of information plus the branches to each

node.

 degree: the number of subtrees of a node

 degree of a tree: the maximum of the degree of the

nodes in the tree.

 terminal nodes (or leaf): nodes that have degree zero

 nonterminal nodes: nodes that don’t belong to terminal
nodes.

 children: the roots of the subtrees of a node X are the

children of X

 parent: X is the parent of its children.

Introduction (4/8)

 Some Terminology (cont’d)
 siblings: children of the same parent are said to be

siblings.

 Ancestors of a node: all the nodes along the path

from the root to that node.

 The level of a node: defined by letting the root be at

level one. If a node is at level l, then it children are at

level l+1.

 Height (or depth): the maximum level of any node in
the tree

Introduction (5/8)
 Example

A is the root node
B is the parent of D and E
C is the sibling of B
D and E are the children of B
D, E, F, G, I are external nodes, or leaves
A, B, C, H are internal nodes
The level of E is 3
The height (depth) of the tree is 4
The degree of node B is 2
The degree of the tree is 3
The ancestors of node I is A, C, H

The descendants of node C is F, G, H, I

A

B C

H

I
D E F G

Level

1

2

3

4

Property: (# edges) = (#nodes) - 1

Introduction (6/8)
 Representation Of Trees

 List Representation

 we can write of Figure 5.2 as a list in which each of the
subtrees is also a list

(A (B (E (K, L), F), C (G), D (H (M), I, J)))

 The root comes first,
followed by a list of sub-trees

Introduction (7/8)

 Representation Of

Trees (cont’d)
 Left Child-

Right Sibling

Representation

Introduction (8/8)

 Representation Of Trees (cont’d)
 Representation

As A Degree

Two Tree

Binary Trees (1/9)
 Binary trees are characterized by the fact that

any node can have at most two branches

 Definition (recursive):

 A binary tree is a finite set of nodes that is either

empty or consists of a root and two disjoint binary

trees called the left subtree and the right subtree

 Thus the left subtree and the right subtree are

distinguished

 Any tree can be transformed into binary tree

 by left child-right sibling representation

A

B

A

B

Binary Trees (2/9)
 The abstract data type of binary tree

Binary Trees (3/9)
 Two special kinds of binary trees:

(a) skewed tree, (b) complete binary tree

 The all leaf nodes of these trees are on two adjacent levels

Binary Trees (4/9)
 Properties of binary trees

 Lemma 5.1 [Maximum number of nodes]:

1. The maximum number of nodes on level i of a binary

tree is 2i-1, i 1.

2. The maximum number of nodes in a binary tree of

depth k is 2k-1, k1.

 Lemma 5.2 [Relation between number of leaf

nodes and degree-2 nodes]:

 For any nonempty binary tree, T, if n0 is the number

of leaf nodes and n2 is the number of nodes of

degree 2, then n0 = n2 + 1.

 These lemmas allow us to define full and

complete binary trees

Binary Trees (5/9)

 Definition:

 A full binary tree of depth k is a binary tree of death k

having 2k-1 nodes, k  0.

 A binary tree with n nodes and depth k is complete iff its

nodes correspond to the nodes numbered from 1 to n in

the full binary tree of depth k.

 From Lemma 5.1, the

height of a complete

binary tree with n nodes

is log2(n+1)

Binary Trees (6/9)
 Binary tree representations (using array)

 Lemma 5.3: If a complete binary tree with n nodes

is represented sequentially, then for any node with

index i, 1  i  n, we have

1. parent(i) is at i /2 if i  1.

 If i = 1, i is at the root and has no parent.

2. LeftChild(i) is at 2i if 2i  n.

 If 2i  n, then i has no left child.

3. RightChild(i) is at 2i+1 if 2i+1  n.

 If 2i +1  n, then i has no left child
[1] [2] [3] [4] [5] [6] [7]

A B C — D — E

Level 1

Level 2 Level 3

 A

 B

 D

 C

 E

1

2 3

4 5 6 7

Binary Trees (7/9)
 Binary tree representations (using array)

 Waste spaces: in the worst case, a skewed tree of depth

k requires 2k-1 spaces. Of these, only k spaces will be

occupied

 Insertion or deletion

of nodes from the

middle of a tree

requires the

movement of

potentially many nodes

to reflect the change in

the level of these nodes

Binary Trees (8/9)

 Binary tree representations (using link)

Binary Trees (9/9)
 Binary tree representations (using link)

Binary Tree Traversals (1/9)

 How to traverse a tree or visit each node in the

tree exactly once?

 There are six possible combinations of traversal

LVR, LRV, VLR, VRL, RVL, RLV

 Adopt convention that we traverse left before

right, only 3 traversals remain

LVR (inorder), LRV (postorder), VLR (preorder)

 data right_child left_child

L: moving left R: moving right
V
:

visiting
node

Binary Tree Traversals (2/9)

 Arithmetic Expression using binary tree

 inorder traversal (infix expression)

 A / B * C * D + E

 preorder traversal (prefix expression)

 + * * / A B C D E

 postorder traversal

(postfix expression)

 A B / C * D * E +

 level order traversal

 + * E * D / C A B

Binary Tree Traversals (3/9)
 Inorder traversal (LVR) (recursive version)

L

V
R

ptr

output: A / B * C * D + E

Binary Tree Traversals (4/9)

 Preorder traversal (VLR) (recursive version)

V
L

R

output: A / B * C * D + E

Binary Tree Traversals (5/9)

 Postorder traversal (LRV) (recursive version)

L
R
V

output: A / B * C * D + E

Binary Tree Traversals (6/9)
 Iterative inorder traversal

 we use a stack to simulate recursion

L

V

R

1

+

node output: A / B * C * D + E

2

*

3

*

4

/

5

A

8

B

11

C

14

D

17

E

Binary Tree Traversals (7/9)

 Analysis of inorder2 (Non-recursive Inorder

traversal)

 Let n be the number of nodes in the tree

 Time complexity: O(n)

 Every node of the tree is placed on and removed
from the stack exactly once

 Space complexity: O(n)

 equal to the depth of the tree which

(skewed tree is the worst case)

Binary Tree Traversals (8/9)

 Level-order traversal

 method:

 We visit the root first, then the root’s left child, followed by the
root’s right child.

 We continue in this manner, visiting the nodes at each new
level from the leftmost node to the rightmost nodes

 This traversal requires a queue to implement

Binary Tree Traversals (9/9)
 Level-order traversal (using queue)

FIFO

1

+

ptr

output: A / B * C * D + E

2

*

17

E

3

*

14

D

4

/

11

C

5

A

8

B

