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Introduction (1/8) 

 A tree structure means that the data are organized 

so that items of information are related by branches 

 Examples: 



Introduction (2/8) 

 Definition (recursively): A tree is a finite set of 

one or more nodes such that 

 There is a specially designated node called root. 

 The remaining nodes are partitioned into n>=0 disjoint 

set T1,…,Tn, where each of these sets is a tree. 

T1,…,Tn are called the subtrees of the root. 

 Every node in the tree is the root of some 

subtree 



Introduction (3/8) 

 Some Terminology 

 node: the item of information plus the branches to each 

node. 

 degree: the number of subtrees of a node 

 degree of a tree: the maximum of the degree of the 

nodes in the tree. 

 terminal nodes (or leaf): nodes that have degree zero 

 nonterminal nodes: nodes that don’t belong to terminal 
nodes. 

 children: the roots of the subtrees of a node X are the 

children of X 

 parent: X is the parent of its children. 



Introduction (4/8) 

 Some Terminology (cont’d) 
 siblings: children of the same parent are said to be 

siblings. 

 Ancestors of a node: all the nodes along the path 

from the root to that node. 

 The level of a node: defined by letting the root be at 

level one. If a node is at level l, then it children are at 

level l+1. 

 Height (or depth): the maximum level of any node in 
the tree 



Introduction (5/8) 
 Example 

A is the root node 
B is the parent of D and E 
C is the sibling of B 
D and E are the children of B 
D, E, F, G, I are external nodes, or leaves 
A, B, C, H are internal nodes 
The level of E is 3 
The height (depth) of the tree is 4 
The degree of node B is 2 
The degree of the tree is 3 
The ancestors of node I is A, C, H 

The descendants of node C is F, G, H, I 
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Property: (# edges) = (#nodes) - 1 



Introduction (6/8) 
 Representation Of Trees 

 List Representation 

 we can write of Figure 5.2 as a list in which each of the 
subtrees is also a list 

( A ( B ( E ( K, L ), F ), C ( G ), D ( H ( M ), I, J ) ) ) 

 The root comes first,  
followed by a list of sub-trees 



Introduction (7/8) 

 Representation Of  

Trees (cont’d) 
 Left Child- 

Right Sibling  

Representation 



Introduction (8/8) 

 Representation Of Trees (cont’d) 
 Representation  

As A Degree  

Two Tree 



Binary Trees (1/9) 
 Binary trees are characterized by the fact that 

any node can have at most two branches 

 Definition (recursive): 

 A binary tree is a finite set of nodes that is either 

empty or consists of a root and two disjoint binary 

trees called the left subtree and the right subtree 

 Thus the left subtree and the right subtree are 

distinguished 

 

 

 Any tree can be transformed into binary tree 

 by left child-right sibling representation 
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Binary Trees (2/9) 
 The abstract data type of binary tree 



Binary Trees (3/9) 
 Two special kinds of binary trees:  

(a) skewed tree, (b) complete binary tree 

 The all leaf nodes of these trees are on two adjacent levels 



Binary Trees (4/9) 
 Properties of binary trees 

 Lemma 5.1 [Maximum number of nodes]: 

1. The maximum number of nodes on level i of a binary 

tree is 2i-1, i 1. 

2. The maximum number of nodes in a binary tree of 

depth k is 2k-1, k1. 

 Lemma 5.2 [Relation between number of leaf 

nodes and degree-2 nodes]: 

 For any nonempty binary tree, T, if n0 is the number 

of leaf nodes and n2 is the number of nodes of 

degree 2, then n0 = n2 + 1. 

 These lemmas allow us to define full and 

complete binary trees 



Binary Trees (5/9) 

 Definition: 

 A full binary tree of depth k is a binary tree of death k 

having 2k-1 nodes, k  0. 

 A binary tree with n nodes and depth k is complete iff its 

nodes correspond to the nodes numbered from 1 to n in 

the full binary tree of depth k. 

 From Lemma 5.1, the  

height of a complete  

binary tree with n nodes  

is log2(n+1) 



Binary Trees (6/9) 
 Binary tree representations (using array) 

 Lemma 5.3: If a complete binary tree with n nodes 

is represented sequentially, then for any node with 

index i, 1  i  n, we have 

1.  parent(i) is at i /2 if i  1.  

 If i = 1, i is at the root and has no parent. 

2.  LeftChild(i) is at 2i if 2i  n.  

 If 2i  n, then i has no left child. 

3.  RightChild(i) is at 2i+1 if 2i+1  n.  

 If 2i +1  n, then i has no left child 
[1] [2] [3] [4] [5] [6] [7] 
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Binary Trees (7/9) 
 Binary tree representations (using array) 

 Waste spaces: in the worst case, a skewed tree of depth 

k requires 2k-1 spaces. Of these, only k spaces will be 

occupied 

 Insertion or deletion  

of nodes from the  

middle of a tree  

requires the  

movement of  

potentially many nodes  

to reflect the change in  

the level of these nodes 



Binary Trees (8/9) 

 Binary tree representations (using link) 



Binary Trees (9/9) 
 Binary tree representations (using link) 



Binary Tree Traversals (1/9) 

 How to traverse a tree or visit each node in the 

tree exactly once? 

 There are six possible combinations of traversal 

LVR, LRV, VLR, VRL, RVL, RLV 

 Adopt convention that we traverse left before  

right, only 3 traversals remain 

LVR (inorder), LRV (postorder), VLR (preorder) 

 data right_child left_child 

L: moving left R: moving right 
V 
: 

visiting 
node 



Binary Tree Traversals (2/9) 

 Arithmetic Expression using binary tree 

 inorder traversal (infix expression) 

 A / B * C * D + E 

 preorder traversal (prefix expression) 

 + * * / A B C D E 

 postorder traversal  

(postfix expression) 

 A B / C * D * E + 

 level order traversal 

 + * E * D / C A B 



Binary Tree Traversals (3/9) 
 Inorder traversal (LVR) (recursive version) 

L 

V 
R 

ptr 

output: A / B * C * D + E 



Binary Tree Traversals (4/9) 

 Preorder traversal (VLR) (recursive version) 

V 
L 

R 

output: A / B * C * D + E 



Binary Tree Traversals (5/9) 

 Postorder traversal (LRV) (recursive version) 

L 
R 
V 

output: A / B * C * D + E 



Binary Tree Traversals (6/9) 
 Iterative inorder traversal  

 we use a stack to simulate recursion 

L 

V 
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Binary Tree Traversals (7/9) 

 Analysis of inorder2 (Non-recursive Inorder 

traversal) 

 Let n be the number of nodes in the tree 

 Time complexity: O(n) 

 Every node of the tree is placed on and removed  
from the stack exactly once 

 Space complexity: O(n) 

 equal to the depth of the tree which  

(skewed tree is the worst case) 



Binary Tree Traversals (8/9) 

 Level-order traversal 

 method: 

 We visit the root first, then the root’s left child, followed by the 
root’s right child.  

 We continue in this manner, visiting the nodes at each new 
level from the leftmost node to the rightmost nodes 

 This traversal requires a queue to implement 



Binary Tree Traversals (9/9) 
 Level-order traversal (using queue) 

FIFO 
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