Graphs

Contents

- Terminology
- Graphs as ADTs
- Graphs as ADTs
- Applications of Graphs

- Definition:
 - A set of points that are joined by lines
- Graphs also represent the relationships among data items
- G = { V , E }; that is, a graph is a set of vertices and edges
- A subgraph consists of a subset of a graph's vertices and a subset of its edges

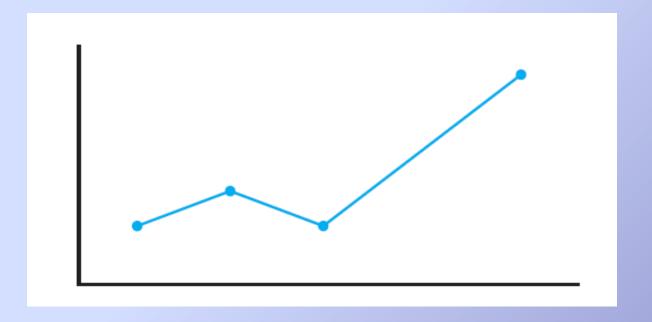


FIGURE 20-1 An ordinary line graph

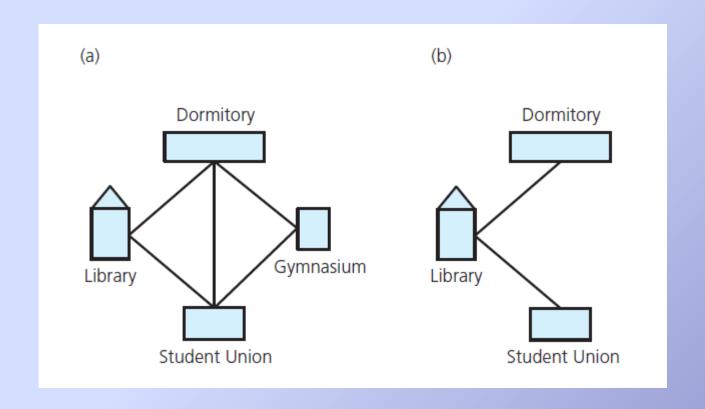


FIGURE 20-2 (a) A campus map as a graph; (b) a subgraph

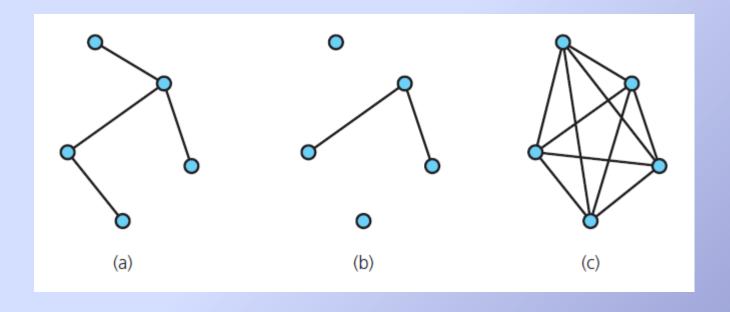


FIGURE 20-3 Graphs that are (a) connected; (b) disconnected; and (c) complete

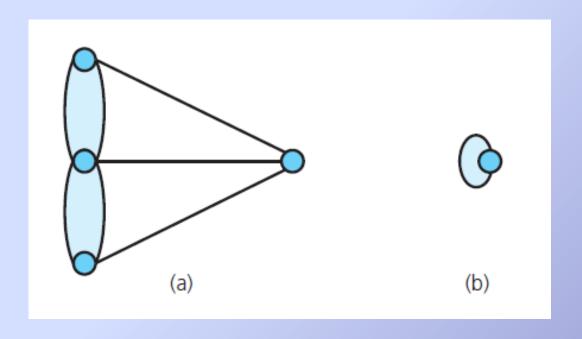


FIGURE 20-4 (a) A multigraph is not a graph; (b) a self edge is not allowed in a graph

- Simple path: passes through vertex only once
- Cycle: a path that begins and ends at same vertex
- Simple cycle: cycle that does not pass through other vertices more than once
- Connected graph: each pair of distinct vertices has a path between them

- Complete graph: each pair of distinct vertices has an edge between them
- Graph cannot have duplicate edges between vertices
 - Multigraph: does allow multiple edges
- When labels represent numeric values, graph is called a weighted graph

- Undirected graphs: edges do not indicate a direction
- Directed graph, or digraph: each edge has a direction

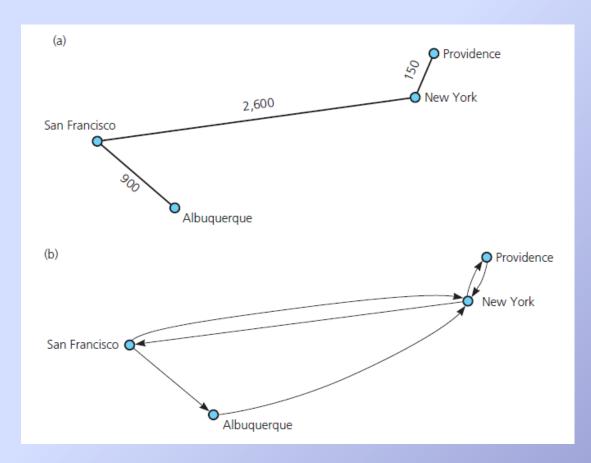


FIGURE 20-5 (a) A weighted graph; (b) a directed graph

Graphs as ADTs

ADT graph operations

- Test whether graph is empty.
- Get number of vertices in a graph.
- Get number of edges in a graph.
- See whether edge exists between two given vertices.
- Insert vertex in graph whose vertices have distinct values that differ from new vertex's value.

Graphs as ADTs

ADT graph operations, ctd.

- Insert edge between two given vertices in graph.
- Remove specified vertex from graph and any edges between the vertex and other vertices.
- Remove edge between two vertices in graph.
- Retrieve from graph vertex that contains given value.
- View interface for undirected, connected graphs,

Listing 20-1

.htm code listing files must be in the same folder as the .ppt files for these links to work

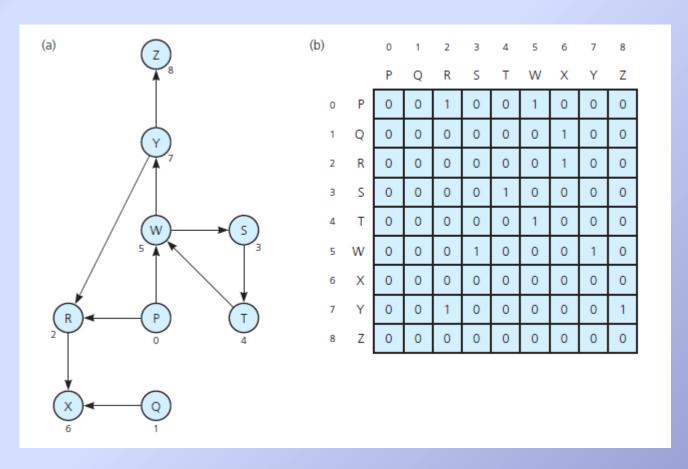


FIGURE 20-6 (a) A directed graph and (b) its adjacency matrix

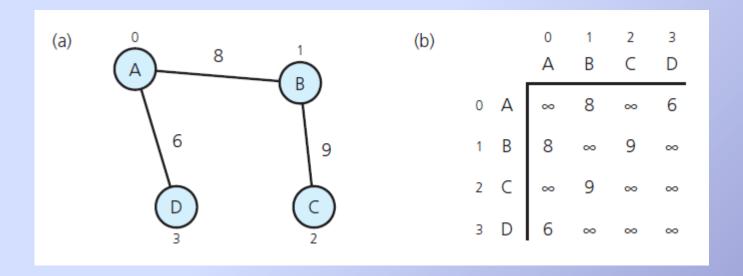


FIGURE 20-7 (a) A weighted undirected graph and (b) its adjacency matrix

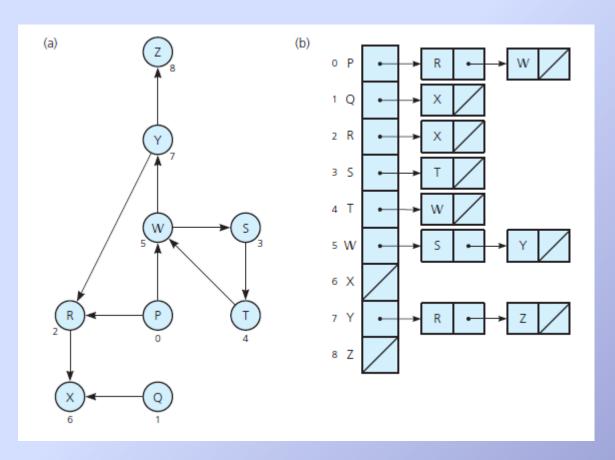


FIGURE 20-8 (a) A directed graph and (b) its adjacency list

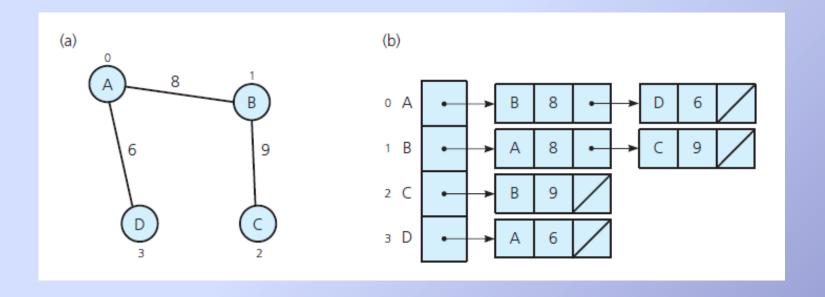


FIGURE 20-9 (a) A weighted undirected graph and (b) its adjacency list

Graph Traversals

- Visits all of the vertices that it can reach
 - Happens if and only if graph is connected
- Connected component is subset of vertices visited during traversal that begins at given vertex

- Goes as far as possible from a vertex before backing up
- Recursive algorithm

```
// Traverses a graph beginning at vertex v by using a 
// depth-first search: Recursive version.

dfs(v: Vertex)

Mark v as visited

for (each unvisited vertex u adjacent to v)

dfs(u)
```

Iterative algorithm, using a stack

```
// Traverses a graph beginning at vertex v by using a
// depth-first search: Iterative version.
dfs(v: Vertex)
   s= a new empty stack
   // Push v onto the stack and mark it
  s.push(v)
  Mark v as visited
  // Loop invariant: there is a path from vertex v at the
  // bottom of the stack s to the vertex at the top of s
  while (!s.isEmpty())
```

Iterative algorithm, using a stack, ctd.

```
if (no unvisited vertices are adjacent to the vertex on the top of the stack)
s.pop() // Backtrack

else
{
    Select an unvisited vertex u adjacent to the vertex on the top of the stack
s.push(u)
    Mark u as visited
}
}
```

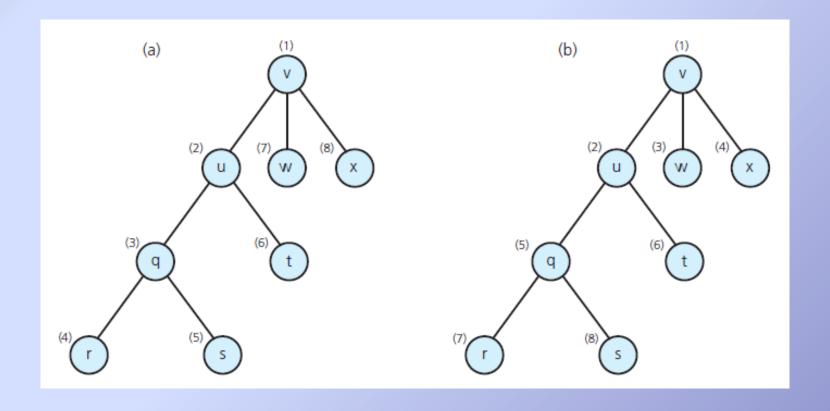


FIGURE 20-10 Visitation order for (a) a depth-first search; (b) a breadth-first search

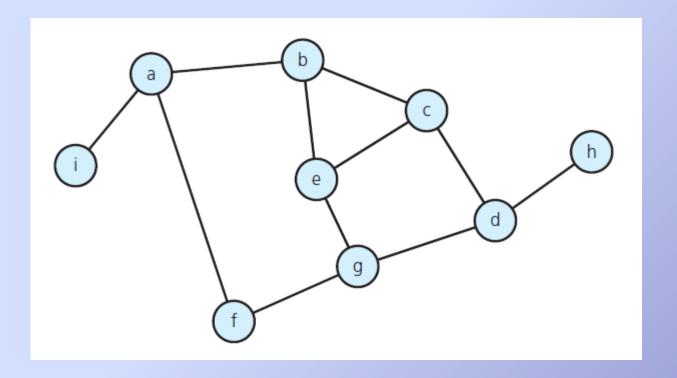


FIGURE 20-11 A connected graph with cycles

Node visited	Stack (bottom to top)
a	a
b	a b
С	a b c
d	a b c d
g	a b c d g
е	a b c d g e
(backtrack)	a b c d g
f	a b c d g f
(backtrack)	a b c d g
(backtrack)	a b c d
nnmm	mahadhimm

```
a b c d h
(backtrack)
                    a b c d
(backtrack)
                    a b c
(backtrack)
                    a b
(backtrack)
(backtrack)
(backtrack)
                     (empty)
```

FIGURE 20-12 The results of a depth-first traversal, beginning at vertex a, of the graph in Figure 20-11

Breadth-First Search

- Visits all vertices adjacent to vertex before going forward
 - See Figure 20-10b
- Breadth-first search uses a queue

```
// Traverses a graph beginning at vertex v by using a
// breadth-first search: Iterative version.
bfs(v: Vertex)

q = a new empty queue

// Add v to queue and mark it
q.enqueue(v)
Mark v as visited

while (!q.isEmpty())
```

```
while (!q.isEmpty())
{
    q.dequeue(w)

    // Loop invariant: there is a path from vertex w to every vertex in the
    for (each unvisited vertex u adjacent to w)
    {
            Mark u as visited
            q.enqueue(u)
      }
}
```

Breadth-First Search

Node visited	Queue (front to back)
a	a (empty)
b	b
f	b f
i	bfi
	fi
C	fic fice
е	ice
g	iceg
3	c e g
	e g
d	e g d
	g d d
	(empty)
h	h
	(empty)

FIGURE 20-13 The results of a breadth-fi rst traversal, beginning at vertex a, of the graph in Figure 20-11

Topological Sorting

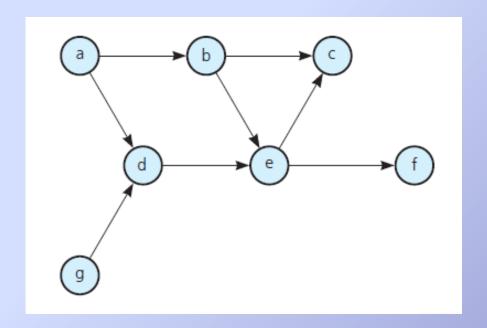


FIGURE 20-14 A directed graph without cycles

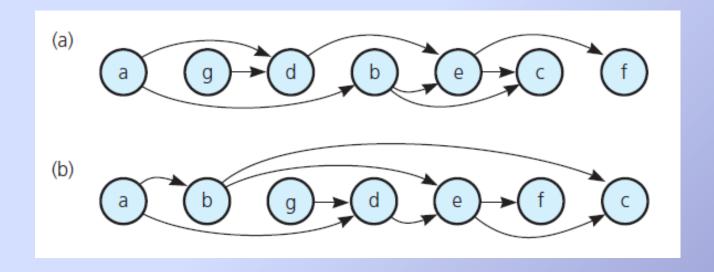
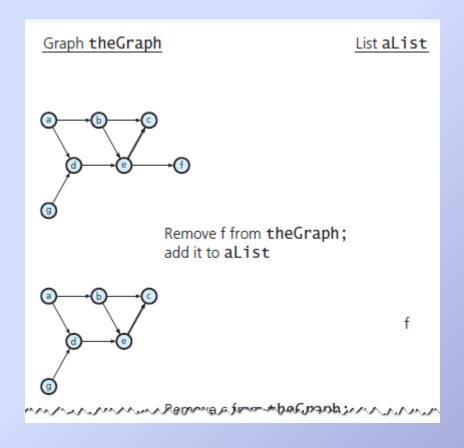


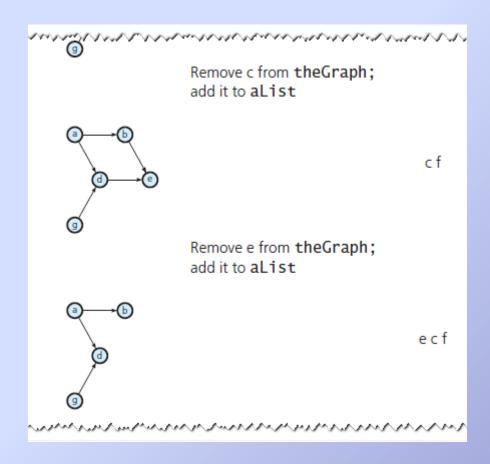
FIGURE 20-15 The graph in Figure 20-14 arranged according to the topological orders (a) *a*, *g*, *d*, *b*, *e*, *c*, *f* and (b) *a*, *b*, *g*, *d*, *e*, *f*, *c*

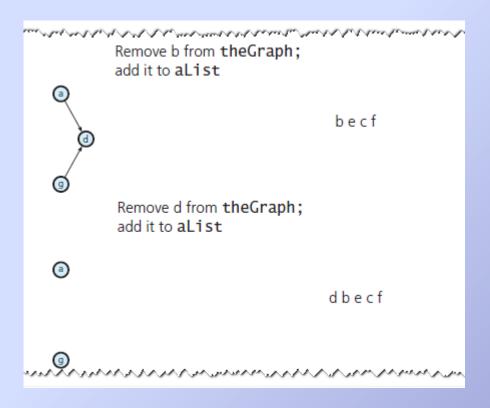
Topological sorting algorithm

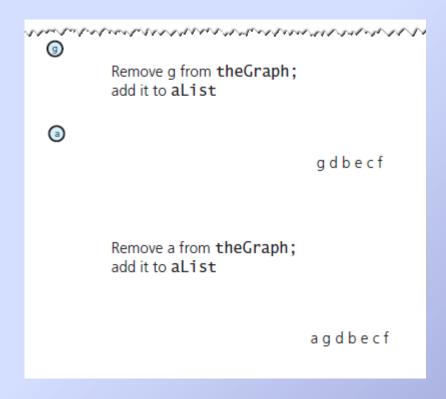
```
// Arranges the vertices in graph theGraph into a
// topological order and places them in list aList.
topSort1(theGraph: Graph, aList: List)

n = number of vertices in theGraph
for (step = 1 through n)
{
    Select a vertex v that has no successors
    aList.insert(1, v)
    Remove from theGraph vertex v and its edges
}
```









Push g Push d Push e Push c Pop c, add c to aList Pop f, add f to aList Pop e, add e to aList Pop d, add d to aList Pop g, add g to aList Push b Pop b, add b to aList	agdec agde agdef agde agd ag	c fc efc defc gdefc gdefc bgdefc abgdefc

Spanning Trees

- Tree: an undirected connected graph without cycles
- Observations about undirected graphs
 - Connected undirected graph with n vertices must have at least n – 1 edges.
 - 2. Connected undirected graph with n vertices, exactly n 1 edges cannot contain a cycle
 - A connected undirected graph with n vertices, more than n – 1 edges must contain at least one cycle

Spanning Trees

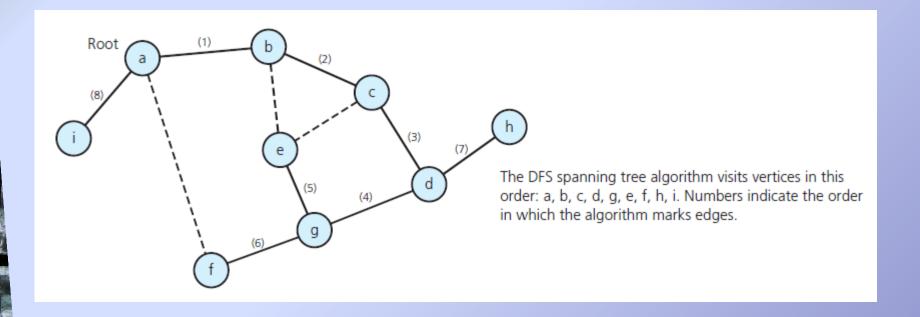


FIGURE 20-20 The DFS spanning tree rooted at vertex a for the graph in Figure 20-11

Spanning Trees

DFS spanning tree algorithm

```
// Forms a spanning tree for a connected undirected graph
// beginning at vertex v by using depth-first search:
// Recursive version.
dfsTree(v: Vertex)

Mark v as visited

for (each unvisited vertex u adjacent to v)
{
    Mark the edge from u to v
    dfsTree(u)
}
```

Spanning Trees

 BFS spanning tree algorithm

```
// Forms a spanning tree for a connected undirected graph
// beginning at vertex \vee by using breadth-first search:
// Iterative version.
bfsTree(v: Vertex)
  q = a new empty queue
  // Add \vee to aueue and mark it
  q.enqueue(v)
  Mark v as visited
  while (!q.isEmpty())
      q.dequeue(w)
      // Loop invariant: there is a path from vertex w to
      // every vertex in the queue q
      for (each unvisited vertex u adjacent to w)
          Mark u as visited
          Mark edge between w and u
          q.enqueue(u)
```

Spanning Trees

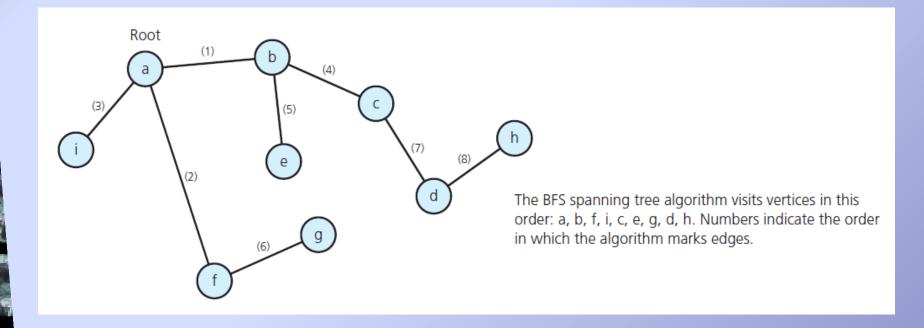


FIGURE 20-21 The BFS spanning tree rooted at vertex a for the graph in Figure 20-11

A minimum spanning tree of a connected undirected graph has a minimal edge-weight sum

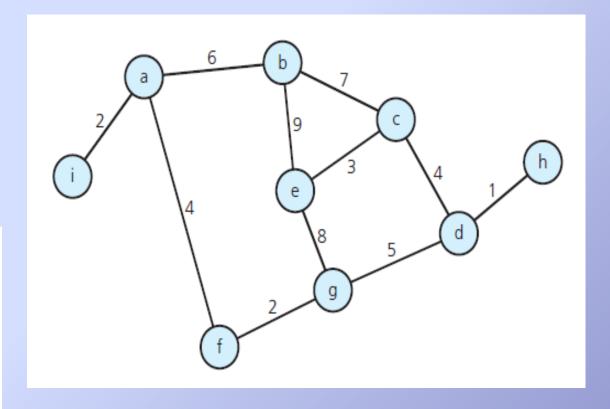


FIGURE 20-22 A weighted, connected, undirected graph

Minimum spanning tree algorithm

```
// Determines a minimum spanning tree for a weighted,
// connected, undirected graph whose weights are
// nonnegative, beginning with any vertex v.
primsAlgorithm(v: Vertex)

Mark vertex v as visited and include it in the minimum spanning tree
while (there are unvisited vertices)
{
    Find the least-cost edge (v, u) from a visited vertex v to some unvisited vertex u
    Mark u as visited
    Add the vertex u and the edge (v, u) to the minimum spanning tree
}
```

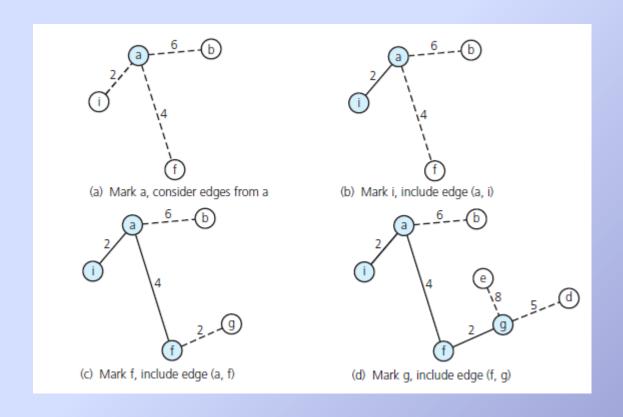


FIGURE 20-23 A trace of primsAlgorithm for the graph in Figure 20-22, beginning at vertex a

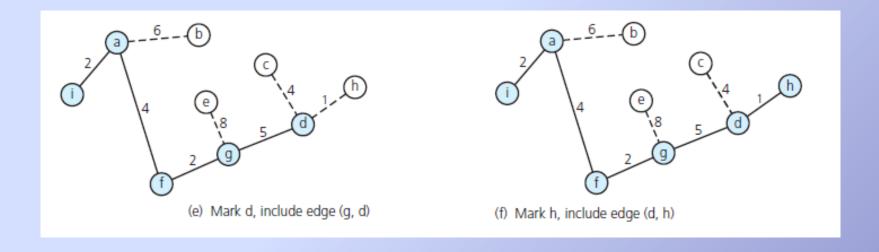


FIGURE 20-23 A trace of primsAlgorithm for the graph in Figure 20-22, beginning at vertex a

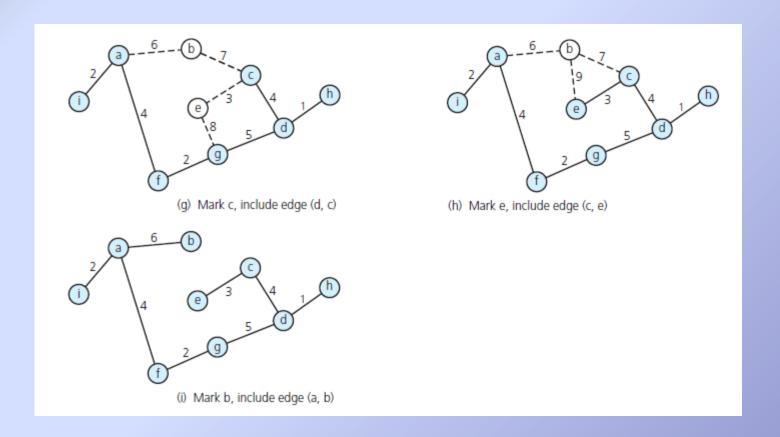


FIGURE 20-23 A trace of primsAlgorithm for the graph in Figure 20-22, beginning at vertex a

 Shortest path between two vertices in a weighted graph has smallest edge-weight sum

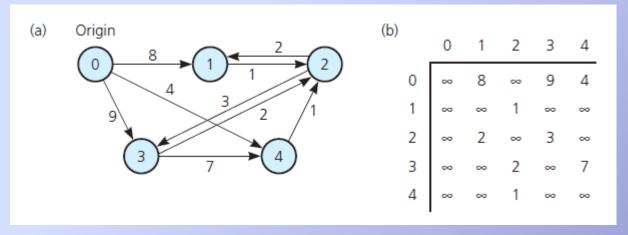


FIGURE 20-24 (a) A weighted directed graph and (b) its adjacency matrix

Dijkstra's shortest-path algorithm

```
// Finds the minimum-cost paths between an origin vertex
    // (vertex 0) and all other vertices in a weighted directed
    // graph the Graph; the Graph's weights are nonnegative.
    shortestPath(theGraph: Graph, weight: WeightArray)
       // Step 1: initialization
       Create a set vertexSet that contains only vertex 0
       n = number of vertices in the Graph
       for (v = 0 through n - 1)
          weight[v] = matrix[0][v]
       // Steps 2 through n
       // Invariant: For v not in vertexSet, weight[v] is the
       // smallest weight of all paths from 0 to \vee that pass
       // through only vertices in vertexSet before reaching
       // v. For v in vertexSet, weight[v] is the smallest
       // weight of all paths from 0 to \vee (including paths
unnunnunnundharkatilaadhbaalabakataandibarkahununnunnun
```

			weight						
Step	<u>V</u>	vertexSet	[0]	[1]	[2]	[3]	[4]		
1	_	0	0	8	∞	9	4		
2	4	0, 4	0	8	5	9	4		
3	2	0, 4, 2	0	7	5	8	4		
4	1	0, 4, 2, 1	0	7	5	8	4		
5	3	0, 4, 2, 1, 3	0	7	5	8	4		

FIGURE 20-25 A trace of the shortest-path algorithm applied to the graph in Figure 20-24 a

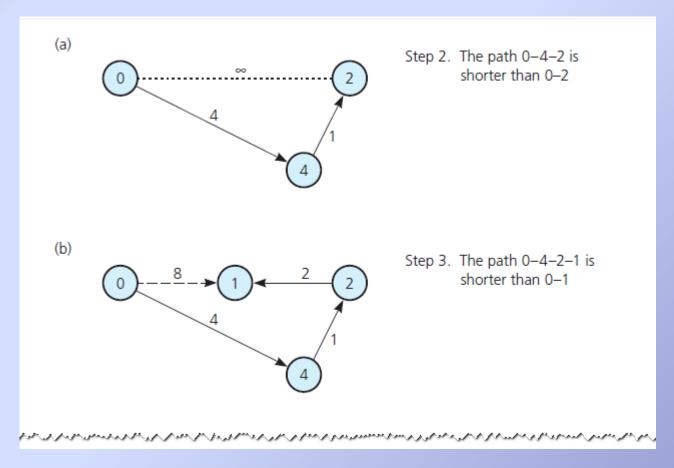


FIGURE 20-26 Checking weight [u] by examining the graph: (a) weight [2] in step 2; (b) weight [1] in step 3;

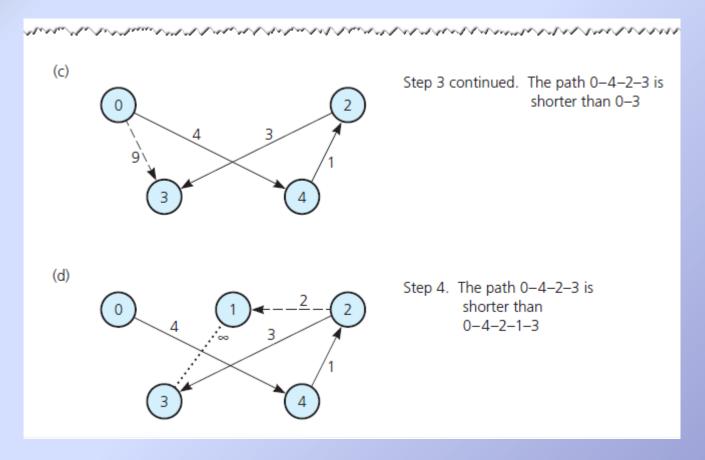


FIGURE 20-26 Checking weight [u] by examining the graph(c) weight [3] in step 3; (d) weight [3] in step 4

Dijkstra's shortest-path algorithm, ctd.

```
// through only vertices in vertexSet before reaching
   // v. For v in vertexSet, weight[v] is the smallest
   // weight of all paths from 0 to \vee (including paths
   // outside vertexSet), and the shortest path
   // from 0 to v lies entirely in vertexSet.
   for (step = 2 through n)
      Find the smallest weight[v] such that v is not in vertexSet
      Add v to vertexSet
      // Check weight[u] for all u not in vertexSet
      for (all vertices u not in vertexSet)
        if (weight[u] > weight[v] + matrix[v][u])
           weight[u] = weight[v] + matrix[v][u]
```

			weight						
Step	<u>V</u>	vertexSet	[0]	_[1]	[2]	_[3]	[4]		
1	_	0	0	8	00	9	4		
2	4	0, 4	0	8	5	9	4		
3	2	0, 4, 2	0	7	5	8	4		
4	1	0, 4, 2, 1	0	7	5	8	4		
5	3	0, 4, 2, 1, 3	0	7	5	8	4		

FIGURE 20-25 A trace of the shortest-path algorithm applied to the graph in Figure 20-24 a

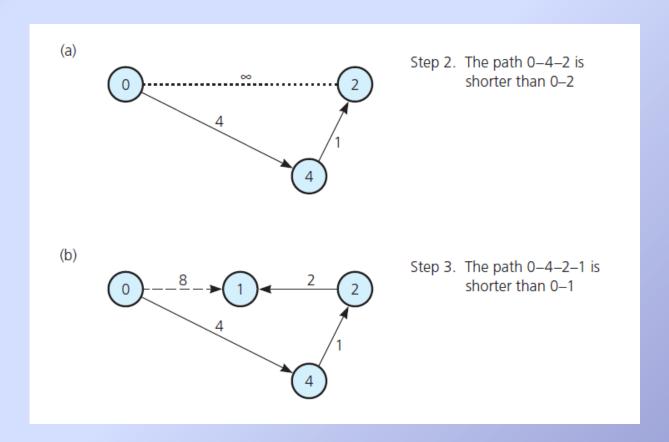


FIGURE 20-26 Checking weight [u] by examining the graph: (a) weight [2] in step 2; (b) weight [1] in step 3;

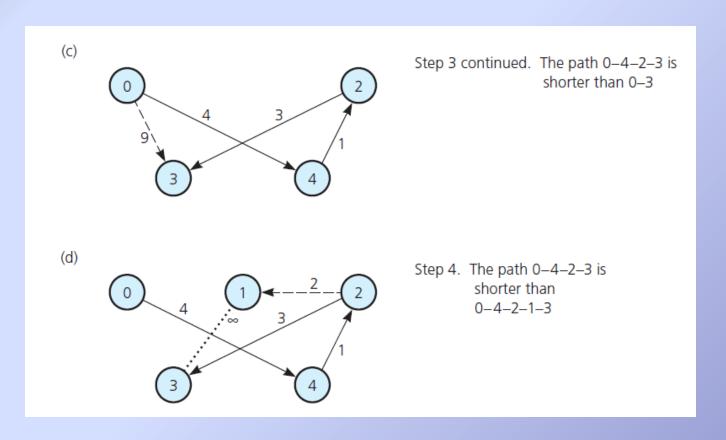


FIGURE 20-26 Checking weight [u] by examining the graph: (c) weight [3] in step 3; (d) weight [3] in step 4

- Another name for a type of cycle common in statement of certain problems
- Circuits either visit every vertex once or visit every edge once
- An Euler circuit begins at a vertex v, passes through every edge exactly once, and terminates at v

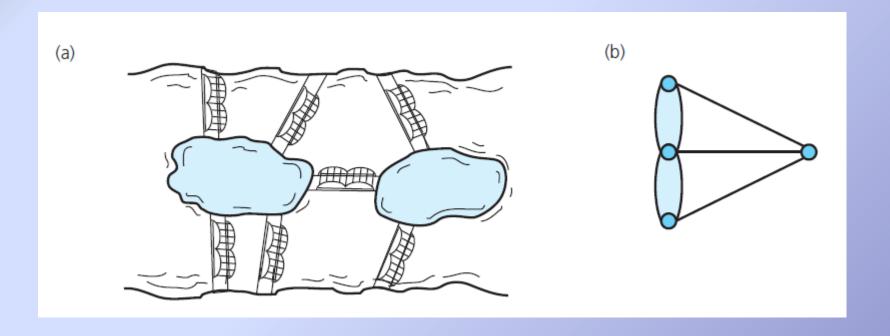


FIGURE 20-27 (a) Euler's bridge problem and (b) its multigraph representation

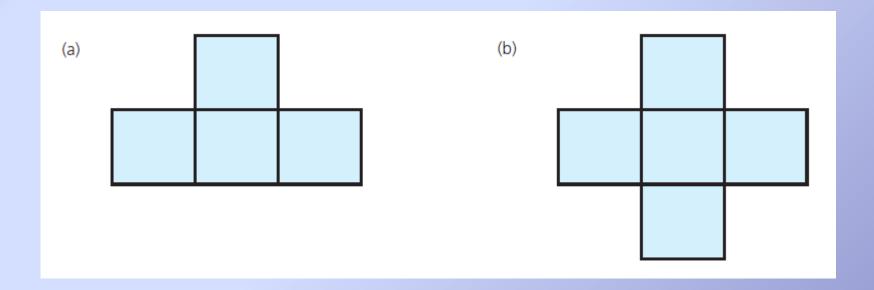


FIGURE 20-28 Pencil and paper drawings

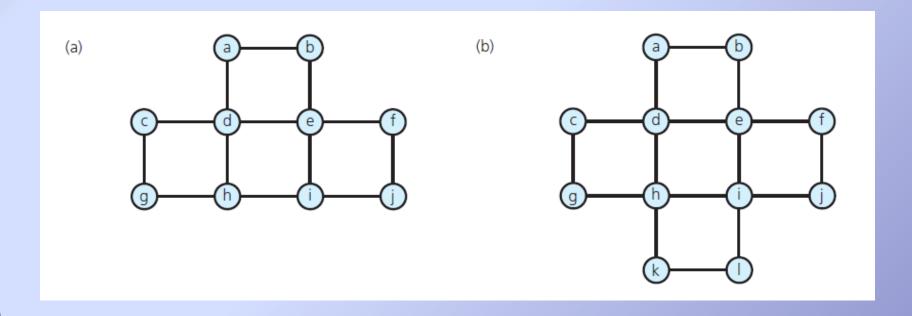


FIGURE 20-29 Connected undirected graphs based on the drawings in Figure 20-28

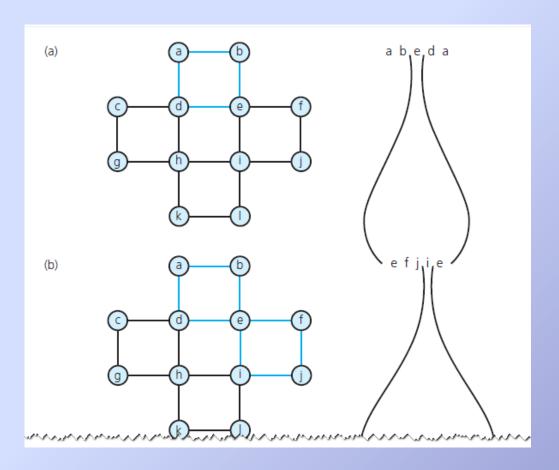


FIGURE 20-30 The steps to determine an Euler circuit for the graph in Figure 20-29 b

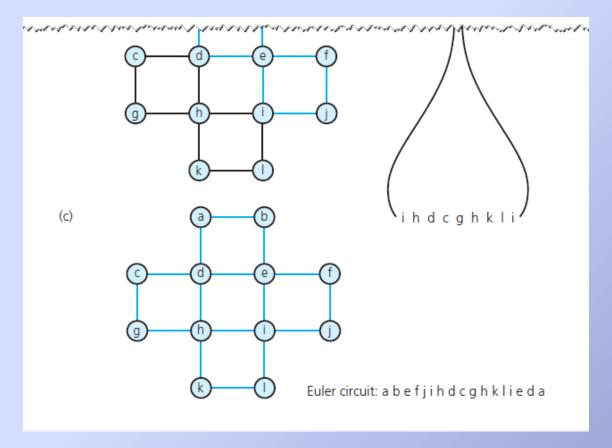


FIGURE 20-30 The steps to determine an Euler circuit for the graph in Figure 20-29 b

- Hamilton circuit
 - Path that begins at a vertex v, passes through every vertex in the graph exactly once, and terminates at v.
- The traveling salesperson problem
 - Variation of Hamilton circuit
 - Involves a weighted graph that represents a road map
 - Circuit traveled must be the least expensive

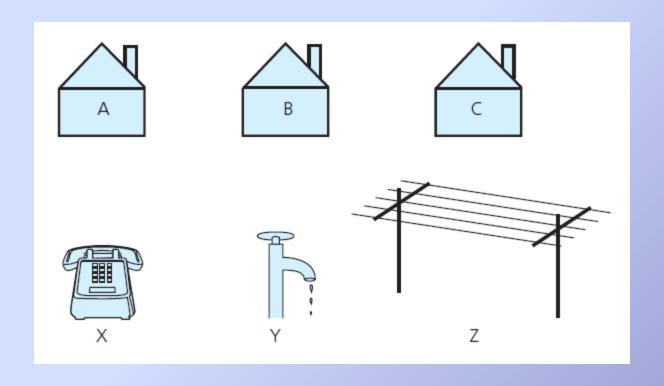


FIGURE 20-31 The three utilities problem

- Planar graph
 - Can draw it in a plane in at least one way so that no two edges cross
- The four-color problem
 - Given a planar graph, can you color the vertices so that no adjacent vertices have the same color, if you use at most four colors?

- 1. Describe the graphs in Figure 20-32. For example, are they directed? Connected? Complete? Weighted?
- 2. Use the depth-first strategy and the breadth-first strategy to traverse the graph in Figure 20-32 a, beginning with vertex 0. List the vertices in the order in which each traversal visits them.

- 3. Write the adjacency matrix for the graph in Figure 20-32 a.
- 4. Add an edge to the directed graph in Figure 20-14 that runs from vertex d to vertex b. Write all possible topological orders for the vertices in this new graph.
- 5. Is it possible for a connected undirected graph with fi ve vertices and four edges to contain a simple cycle? Explain.

- 6. Draw the DFS spanning tree whose root is vertex 0 for the graph in Figure 20-33.
- 7. Draw the minimum spanning tree whose root is vertex 0 for the graph in Figure 20-33.
- 8. What are the shortest paths from vertex 0 to each vertex of the graph in Figure 20-24 a? (Note the weights of these paths in Figure 20-25.)

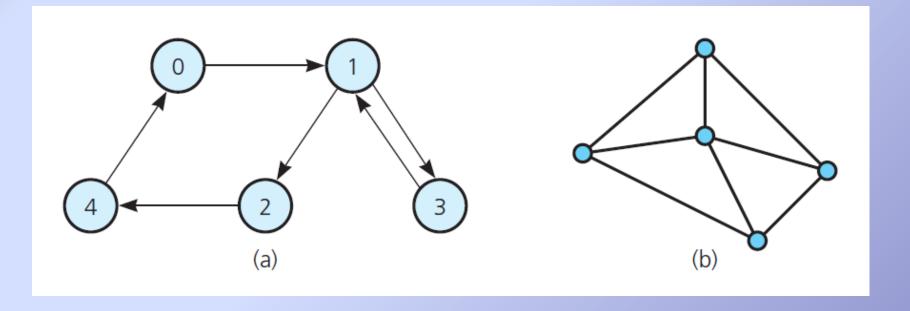


FIGURE 20-32 Graphs for Checkpoint Questions 1, 2, and 3

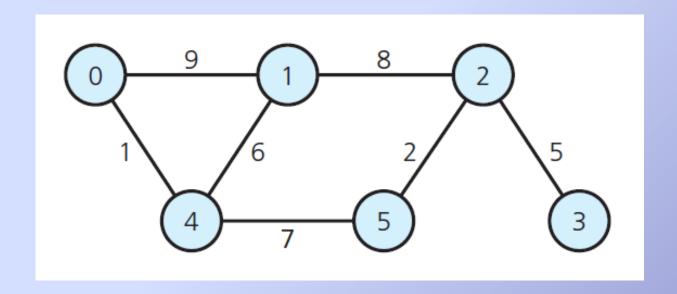


FIGURE 20-33 A graph for Checkpoint Questions 6 and 7 and for Exercises 1 and 4