o T TRAR A

Graphs

e vw

Contents

* Terminology

 Graphs as ADTs
 Graphs as ADTs
* Applications of Graphs

SUITSLIE AIPRA B | v&m

Terminology

* Definition:
= A set of points that are joined by lines

* Graphs also represent the relationships
| among data items

1 - G={V, E} thatis, a graph is a set of
® vertices and edges

s ° A subgraph consists of a subset of a
=w graph’s vertices and a subset of its edges

BTl UFBA LS | _

Terminology

FIGURE 20-1 An ordinary line graph

- _

Terminology

(a) (b)
Dormitory Dormitory
Library Gymnasium Library
Student Union Student Union

FIGURE 20-2 (a) A campus map as a graph;
(b) a subgraph

BTl UFBA LS | _

Terminology

g\ O @
@]
(a) (b) (c)

FIGURE 20-3 Graphs that are (a) connected,;
(b) disconnected; and (c) complete

SEIRAIE ATRA S B S L | “

Terminology

FIGURE 20-4 (a) A multigraph is not a graph;
(b) a self edge is not allowed in a graph

o T RAR A

Terminology

» Simple path: passes through vertex only
once

» Cycle: a path that begins and ends at same
vertex

i . Simple cycle: cycle that does not pass
R through other vertices more than once

ms * Connected graph: each pair of distinct
vertices has a path between them

o T RAR A

Terminology

« Complete graph: each pair of distinct
vertices has an edge between them

» Graph cannot have duplicate edges
between vertices
= Multigraph: does allow multiple edges

'8 < When labels represent numeric values,
graph is called a weighted graph

SRS — vw

Terminology

* Undirected graphs: edges do not indicate a
direction

* Directed graph, or digraph: each edge has
a direction

- “

Terminology

Providence

New York

Albuquergue

Albuquergue

FIGURE 20-5 (a) A weighted graph;
(b) a directed graph

Sl B TR TR v&m
Graphs as ADTs

ADT graph operations
= Test whether graph is empty.
= Get number of vertices in a graph.
= Get number of edges in a graph.

= See whether edge exists between two given
vertices.

= Insert vertex in graph whose vertices have
distinct values that differ from new vertex’s
value.

A ITRLIT AlFBA S B E | | H’w
Graphs as ADTs

ADT graph operations, ctd.
= |nsert edge between two given vertices in graph.

= Remove specified vertex from graph and any edges
between the vertex and other vertices.

= Remove edge between two vertices in graph.
= Retrieve from graph vertex that contains given value.

% . \/iew interface for undirected, connected graphs,

Listing 20-1 .htm code listing files
must be in the same
folder as the .ppt files
for these links to
work

Chapter20-CodeListing.html
Chapter20-CodeListing.html
Chapter20-CodeListing.html

(b)

Implementing Graphs

[= ololol]lo ol|lol|l — | o
N = alolal]la = =N =N =]
= | o = = =N =] ol ol]lol] o
zl—|lelolel—|o|le|l=]o
; I (= olol]l—|o ol olol]lo
i
=
L = ololal]lao = =N =N =]
="}
= El—|loalalaoalalaelas]l~]|=
‘l
-
= — [= =] =] =] =] =] =] =] =]
___ =
- o | o olol]lol]lo ol ol]lol]lo
—
3
,..lu (= [[+ L = u.n = - [}
T
‘ (=] L, . w=f u w = =]
Fod

FIGURE 20-6 (a) A directed graph and
(b) its adjacency matrix

BTl UFBA LS | _

Implementing Graphs

(a) 0 . (b) o 1 2 3

FIGURE 20-7 (a) A weighted undirected graph and
(b) its adjacency matrix

o T TRAR A

Implementing Graphs

- III 1l f

P R
1 Q X
2 R X
— \

W
7

FIGURE 20-8 (a) A directed graph and

(b) its adjacency list

R [TRLIT LIV B S | | _

Implementing Graphs

(a) (b)
= = B B L D E
B - Al s o c|o
2 C . = B 9
3 D - = A] -/

FIGURE 20-9 (a) A weighted undirected graph and
(b) its adjacency list

SUITSLIE AIPRA B | v&m

Graph Traversals

* Visits all of the vertices that it can reach
= Happens if and only if graph is connected
» Connected component is subset of vertices

visited during traversal that begins at given
vertex

A ITRLIT AlFBA S B E | | _
Depth-First Search

* Goes as far as possible from a vertex before
backing up
* Recursive algorithm

R IPRLIT LIFRAT S & | _
Depth-First Search

* |terative algorithm, using a stack

R IPRLIT LIFRAT S & | _
Depth-First Search

* |terative algorithm, using a stack, ctd.

L i T i e I R ol ol e N N N L RN L i DR el R b R T s LRl i

e e L A _
Depth-First Search

FIGURE 20-10 Visitation order for (a) a depth-first
search; (b) a breadth-first search

R IPRLIT LIFRAT S b | _
Depth-First Search

R IPRLIT LIFRAT S b | _
Depth-First Search

Node visited

Stack (bottom to top)

a a
b ab
C abc
d abcd T backtack) T TR ST
g abcdg h abcdh
e abcdge (backtrack) abcd
(backtrack) abcdg (backtrack) abc
f abcdgf (backtrack) ab
(backtrack) abcdg (backtrack) 3
(backtrack) abcd i i

L S N S X e S T Ay (backtrack) a

(backtrack) (empty)

FIGURE 20-12 The results of a depth-first traversal,
beginning at vertex a , of the graph in Figure 20-11

R [TRLIT LIV TS | |

Breadth-First Search

* Visits all vertices adjacent to vertex before
going forward

= See Figure 20-10b
» Breadth-first search uses a queue

gl T F il FERJ A EGE JEFEFFGEFOF FTe I I et F e e e P

R IPRLIT Al FRA TS | _
Breadth-First Search

MNode visited Queue (front to back)
a a
(empty)
b b
f b f
bfi
fi
fic
e fice
| Ce
g lceq
ceq
eg
d egd
g d
d
(empty)
h h
(empty)

FIGURE 20-13 The results of a breadth-fi rst traversal,
beginning at vertex a, of the graph in Figure 20-11

L ITRAIT AP Ba B s | | V’“
Applications of Graphs

« Topological Sorting

% '
W, #
Y 1Y
Y, !
Y, %
4 E !

A
I
y

.
.".
Fy

@

FIGURE 20-14 A directed graph without cycles

R ITRLIT AlFBA s B E | | “
Applications of Graphs

(a) — — ——
o —
ONOJ O ONOLONO

FIGURE 20-15 The graph in Figure 20-14 arranged
according to the topological orders (a) a, g,

d b,e c fand(b)a, b, g, d e fc

A ITRLIT AlFBA S B E | | _
Applications of Graphs

* Topological sorting algorithm

R ITRLIT AlFBA s B E | | _
Applications of Graphs

Graph theGraph Listalist

Remove f from theGraph;
additto alList

LD S fon 00 S b o p PGTRONG 5 Jome -t Dol AR L st p

FIGURE 20-16 A trace of topSort1 for the
graph in Figure 20-14

R ITRLIT AlFBA s B E | | _
Appllcatlons of Graphs

@II R R B e e e e e e i

Remove c from theGraph;
add it to aList

\
“‘+ ": cf

Remove e from theGraph;
additto aList

P T R T W T L N N T S N P U N S W Y B &

FIGURE 20-16 A trace of topSort1 for the
graph in Figure 20-14

R ITRLIT AlFBA s B E | | _
Applications of Graphs

R R N R N N Bt i Lk i L i ek i Bl S bl B e s i o e e
Remove b from theGraph;
add itto alist

N, becf
Remove d from theGraph;
add itto aList
dbecf
-/.af@_/ Fopdodt oo B o gt g st B o B g g I P | e

FIGURE 20-16 A trace of topSort1 for the
graph in Figure 20-14

R ITRLIT AlFBA s B E | | “
Applications of Graphs

Remove g from theGraph;
add itto alList

gdbecf

Remaove a from theGraph;
additto alist

agdbecf

FIGURE 20-16 A trace of topSort1 for the
graph in Figure 20-14

R ITRLI? AIFBA s B E | | _
Applications of Graphs

Action Stack s (bottom to top) List aLi st (beginning to end)
Push a a

Push g ag

Push d agd

Push e agde c

Push ¢ agdec C

Pop ¢, add c to aList agde fc

Push f agdef efc

Popf, addfto alList agde defc
Pope, addeto alist agd gdefc
Popd, add d to aList ag gdefc
Pop g, add gto aList a bgdefc
Push b ab abgdefc
Pop b, add bto aList a

Pop a, add ato alist (empty)

FIGURE 20-17 A trace of topSort2 for the
graph in Figure 20-14

o T RAR A

Spanning Trees

* Tree: an undirected connected graph
without cycles

* Observations about undirected graphs

1. Connected undirected graph with n vertices
must have at least n — 1 edges.

2. Connected undirected graph with n vertices,
exactly n — 1 edges cannot contain a cycle

3. A connected undirected graph with n vertices,
more than n — 1 edges must contain at least
one cycle

o T TRAR A

Spanning Trees

The DFS spanning tree algorithm visits vertices in this
order: a, b, ¢, d, g, e, f, h, i. Numbers indicate the order
in which the algorithm marks edges.

FIGURE 20-20 The DFS spanning tree rooted at vertex
a for the graph in Figure 20-11

e _

Spanning Trees

* DFS spanning tree algorithm

S _

Spanning Trees

* BFS spanning
tree algorithm

S _

Spanning Trees

The BFS spanning tree algorithm visits vertices in this
order: a, b, f, i, ¢, e, g, d, h. Numbers indicate the order
in which the algorithm marks edges.

FIGURE 20-21 The BFS spanning tree rooted at vertex
a for the graph in Figure 20-11

o T TRAR A

Minimum Spanning Trees

A minimum
spanning tree of a
connected
undirected graph
has a minimal
edge-weight sum

FIGURE 20-22 A weighted, connected, undirected graph

e _

Minimum Spanning Trees

* Minimum spanning tree algorithm

o T TRAR A

Minimum Spanning Trees

ra
2) i 2 \
i \ 1
1 %
O O

W v
L \
\
\

5 o

(al Mark a, consider edges from a (b} Mark i, include edge (a, i)

(€} Mark f, include edge (3, f) (d) Mark g, include edge (f, g)

FIGURE 20-23 A trace of primsAlgorithm for the graph in
Figure 20-22 , beginning at vertex a

BTl UFBA LS | _

Minimum Spanning Trees

50

(&) Mark d, include edge (g, d) ifi Mark b include edae (d k)

FIGURE 20-23 A trace of primsAlgorithm for the graph in
Figure 20-22 , beginning at vertex a

S _

Minimum Spanning Trees

(it Mark b, include edge (3, b}

FIGURE 20-23 A trace of primsAlgorithm for the graph in
Figure 20-22 , beginning at vertex a

L ITRAIT AP Ba B | | H’“
Shortest Paths

« Shortest path between two vertices in a
weighted graph has smallest edge-weight
sum

(b)

g 8w § o L

8 & & & 13

FIGURE 20-24 (a) A weighted directed graph
and (b) its adjacency matrix

R IPRLIT Al FRA S | _
Shortest Paths

» Dijkstra’s shortest-path algorithm

S _
Shortest Paths

weight
Step v vertexSet [0] [1] 2] 3] (4]
1 — 0 0 8 oo 9 4
2 4 0,4 0 8 5 9 4
3 2 0,42 0 7 5 8 4
4 1 0,4, 21 0 7 5 8 4
5 3 0,42,1,3 0 7 5 8 4

FIGURE 20-25 A trace of the shortest-path algorithm
applied to the graph in Figure 20-24 a

S _
Shortest Paths

Step 2. The path 0-4-2is
shorter than 0-2

(a)

Step 3. The path 0-4-2-1is

®+\® shorter than 0-1

nd™ b e At o o P R g

FIGURE 20-26 Checklng welght [u] by examining the
graph: (a) weight [2] in step 2; (b) weight [1] in step 3;

S _
Shortest Paths

FOr T T w A e eI F e F AT FFEF

Step 3 continued. The path 0-4-2-3 is
shorter than 0-3

Step 4. The path 0-4-2-3 is
shorter than
0-4-2-1-3

FIGURE 20-26 Checking weight [u] by examining the
graph(c) weight [3] in step 3; (d) weight [3] in step 4

R IPRLIT Al FRA S | _
Shortest Paths

» Dijkstra’s shortest-path algorithm, ctd.

B T A et o T e F

R IPRLIT Al FRA TS | _
Shortest Paths

welght
Step v vertexSet [0] [1] [2] [3] [4]
1 - 0 0 8 o 9 4
2 4 0,4 0 8 5 9 4
3 2 0,4,2 0 7 5 8 4
4 1 0,4, 21 0 7 5 8 4
5 3 0,4,2,1,3 0 7 5 8 4

FIGURE 20-25 A trace of the shortest-path algorithm
applied to the graph in Figure 20-24 a

R IPRLIT Al FRA TS | _
Shortest Paths

Step 2. The path 0-4-2 is
shorter than 0-2

b
©) Step 3. The path 0-4-2-1is

__§_+®4—2® shorter than 0-1
4

FIGURE 20-26 Checking weight [u] by examining the
graph: (a) weight [2] in step 2; (b) weight [1] in step 3;

R IPRLIT Al FRA TS | *
Shortest Paths

Step 3 continued. The path 0-4-2-3is
shorter than 0-3

Step 4. The path 0-4-2-3is
shorter than
0-4-2-1-3

FIGURE 20-26 Checking weight [u] by examining the
graph: (c) weight [3] in step 3; (d) weight [3] in step 4

SUITSLIE AIPRA B | v&m

Circuits

* Another name for a type of cycle common
In statement of certain problems

 Circuits either visit every vertex once or visit
every edge once

' « An Euler circuit begins at a vertex v, passes
R through every edge exactly once, and
terminates at v

-
[=5 5‘

S _

Circuits

(a) (b)

FIGURE 20-27 (a) Euler’s bridge problem and
(b) its multigraph representation

o T TRAR A

Circuits

(a) (b)

FIGURE 20-28 Pencil and paper drawings

o T TRAR A

Circuits

FIGURE 20-29 Connected undirected graphs based on
the drawings in Figure 20-28

o T TRAR A

Circuits

@ @ abeda

efijie

FIGURE 20-30 The steps to determine an Euler circuit
for the graph in Figure 20-29 b

- _

Clrcmts

2

TN L W LU L

(© O—® ihdcghkli
O—0O——C0E——~0
Q—O—C0O—~0

O—0 eukrcraitabefjindcghklieda

FIGURE 20-30 The steps to determine an Euler circuit
for the graph in Figure 20-29 b

o T RAR A

Some Difficult Problems

« Hamilton circuit

= Path that begins at a vertex v, passes through

every vertex in the graph exactly once, and
terminates at v .

. * The traveling salesperson problem
= Variation of Hamilton circuit

= |[nvolves a weighted graph that represents a
road map

= Circuit traveled must be the least expensive

BTl UFBA LS | _

Some Difficult Problems

FIGURE 20-31 The three utilities problem

SUITSLIE AIPRA B | v&m

Some Difficult Problems

* Planar graph

= Can draw it in a plane in at least one way so
that no two edges cross

* The four-color problem

= Given a planar graph, can you color the
vertices so that no adjacent vertices have the
same color, if you use at most four colors?

RLIPIE MFBA B RS B | w

Some Difficult Problems

1. Describe the graphs in Figure 20-32 . For
example, are they directed”? Connected?
Complete? Weighted?

2. Use the depth-first strategy and the
“ breadth-first strategy to traverse the graph
in Figure 20-32 a, beginning with vertex 0.
List the vertices in the order in which each
traversal visits them.

RLIPIE MFBA B RS B | w

Some Difficult Problems

3. Write the adjacency matrix for the graph in
Figure 20-32 a.

4. Add an edge to the directed graph in
Figure 20-14 that runs from vertex d to
vertex b. Write all possible topological
orders for the vertices in this new graph.

& 5. Is it possible for a connected undirected
' graph with fi ve vertices and four edges to
contain a simple cycle? Explain.

RLIPIE MFBA B RS B | w

Some Difficult Problems

6. Draw the DFS spanning tree whose root is
vertex O for the graph in Figure 20-33 .

/. Draw the minimum spanning tree whose
root is vertex O for the graph in Figure 20-
33.

a 8. What are the shortest paths from vertex 0
& to each vertex of the graph in Figure
20-24 a”? (Note the weights of these paths
in Figure 20-25 .)

o T TRAR A

Some Difficult Problems

FIGURE 20-32 Graphs for Checkpoint
Questions 1, 2, and 3

SEIRAIE ATRA S B S L | “

Some Difficult Problems

FIGURE 20-33 A graph for Checkpoint Questions 6
and 7 and for Exercises 1 and 4

