
Graphs

Contents

• Terminology

• Graphs as ADTs

• Graphs as ADTs

• Applications of Graphs

Terminology

• Definition:

 A set of points that are joined by lines

• Graphs also represent the relationships

among data items

• G = { V , E }; that is, a graph is a set of

vertices and edges

• A subgraph consists of a subset of a

graph’s vertices and a subset of its edges

Terminology

FIGURE 20-1 An ordinary line graph

Terminology

FIGURE 20-2 (a) A campus map as a graph;

(b) a subgraph

Terminology

FIGURE 20-3 Graphs that are (a) connected;

(b) disconnected; and (c) complete

Terminology

FIGURE 20-4 (a) A multigraph is not a graph;

(b) a self edge is not allowed in a graph

Terminology

• Simple path: passes through vertex only

once

• Cycle: a path that begins and ends at same

vertex

• Simple cycle: cycle that does not pass

through other vertices more than once

• Connected graph: each pair of distinct

vertices has a path between them

Terminology

• Complete graph: each pair of distinct

vertices has an edge between them

• Graph cannot have duplicate edges

between vertices

 Multigraph: does allow multiple edges

• When labels represent numeric values,

graph is called a weighted graph

Terminology

• Undirected graphs: edges do not indicate a

direction

• Directed graph, or digraph: each edge has

a direction

Terminology

FIGURE 20-5 (a) A weighted graph;

(b) a directed graph

Graphs as ADTs

ADT graph operations

 Test whether graph is empty.

 Get number of vertices in a graph.

 Get number of edges in a graph.

 See whether edge exists between two given

vertices.

 Insert vertex in graph whose vertices have

distinct values that differ from new vertex’s

value.

Graphs as ADTs

ADT graph operations, ctd.

 Insert edge between two given vertices in graph.

 Remove specified vertex from graph and any edges

between the vertex and other vertices.

 Remove edge between two vertices in graph.

 Retrieve from graph vertex that contains given value.

• View interface for undirected, connected graphs,

Listing 20-1 .htm code listing files

must be in the same

folder as the . files

.htm code listing files

must be in the same

folder as the .ppt files

for these links to

work

Chapter20-CodeListing.html
Chapter20-CodeListing.html
Chapter20-CodeListing.html

Implementing Graphs

FIGURE 20-6 (a) A directed graph and

(b) its adjacency matrix

Implementing Graphs

FIGURE 20-7 (a) A weighted undirected graph and

(b) its adjacency matrix

Implementing Graphs

FIGURE 20-8 (a) A directed graph and

(b) its adjacency list

Implementing Graphs

FIGURE 20-9 (a) A weighted undirected graph and

(b) its adjacency list

Graph Traversals

• Visits all of the vertices that it can reach

 Happens if and only if graph is connected

• Connected component is subset of vertices

visited during traversal that begins at given

vertex

Depth-First Search

• Goes as far as possible from a vertex before

backing up

• Recursive algorithm

Depth-First Search

• Iterative algorithm, using a stack

Depth-First Search

• Iterative algorithm, using a stack, ctd.

Depth-First Search

FIGURE 20-10 Visitation order for (a) a depth-first

search; (b) a breadth-first search

Depth-First Search

FIGURE 20-11 A connected graph with cycles

Depth-First Search

FIGURE 20-12 The results of a depth-first traversal,

beginning at vertex a , of the graph in Figure 20-11

Breadth-First Search

• Visits all vertices adjacent to vertex before

going forward

 See Figure 20-10b

• Breadth-first search uses a queue

Breadth-First Search

FIGURE 20-13 The results of a breadth-fi rst traversal,

beginning at vertex a, of the graph in Figure 20-11

Applications of Graphs

FIGURE 20-14 A directed graph without cycles

• Topological Sorting

Applications of Graphs

FIGURE 20-15 The graph in Figure 20-14 arranged

according to the topological orders (a) a, g,

d, b, e, c, f and (b) a, b, g, d, e, f, c

Applications of Graphs

• Topological sorting algorithm

Applications of Graphs

FIGURE 20-16 A trace of topSort1 for the

graph in Figure 20-14

Applications of Graphs

FIGURE 20-16 A trace of topSort1 for the

graph in Figure 20-14

Applications of Graphs

FIGURE 20-16 A trace of topSort1 for the

graph in Figure 20-14

Applications of Graphs

FIGURE 20-16 A trace of topSort1 for the

graph in Figure 20-14

Applications of Graphs

FIGURE 20-17 A trace of topSort2 for the

graph in Figure 20-14

Spanning Trees

• Tree: an undirected connected graph

without cycles

• Observations about undirected graphs

1. Connected undirected graph with n vertices

must have at least n – 1 edges.

2. Connected undirected graph with n vertices,

exactly n – 1 edges cannot contain a cycle

3. A connected undirected graph with n vertices,

more than n – 1 edges must contain at least

one cycle

Spanning Trees

FIGURE 20-20 The DFS spanning tree rooted at vertex

a for the graph in Figure 20-11

Spanning Trees

• DFS spanning tree algorithm

Spanning Trees

• BFS spanning

tree algorithm

Spanning Trees

FIGURE 20-21 The BFS spanning tree rooted at vertex

a for the graph in Figure 20-11

Minimum Spanning Trees

FIGURE 20-22 A weighted, connected, undirected graph

Minimum Spanning Trees

• Minimum spanning tree algorithm

Minimum Spanning Trees

FIGURE 20-23 A trace of primsAlgorithm for the graph in

Figure 20-22 , beginning at vertex a

Minimum Spanning Trees

FIGURE 20-23 A trace of primsAlgorithm for the graph in

Figure 20-22 , beginning at vertex a

Minimum Spanning Trees

FIGURE 20-23 A trace of primsAlgorithm for the graph in

Figure 20-22 , beginning at vertex a

Shortest Paths

• Shortest path between two vertices in a

weighted graph has smallest edge-weight

sum

FIGURE 20-24 (a) A weighted directed graph

and (b) its adjacency matrix

Shortest Paths

• Dijkstra’s shortest-path algorithm

Shortest Paths

FIGURE 20-25 A trace of the shortest-path algorithm

applied to the graph in Figure 20-24 a

Shortest Paths

FIGURE 20-26 Checking weight [u] by examining the

graph: (a) weight [2] in step 2; (b) weight [1] in step 3;

Shortest Paths

FIGURE 20-26 Checking weight [u] by examining the

graph(c) weight [3] in step 3; (d) weight [3] in step 4

Shortest Paths

• Dijkstra’s shortest-path algorithm, ctd.

Shortest Paths

FIGURE 20-25 A trace of the shortest-path algorithm

applied to the graph in Figure 20-24 a

Shortest Paths

FIGURE 20-26 Checking weight [u] by examining the

graph: (a) weight [2] in step 2; (b) weight [1] in step 3;

Shortest Paths

FIGURE 20-26 Checking weight [u] by examining the

graph: (c) weight [3] in step 3; (d) weight [3] in step 4

Circuits

• Another name for a type of cycle common

in statement of certain problems

• Circuits either visit every vertex once or visit

every edge once

• An Euler circuit begins at a vertex v, passes

through every edge exactly once, and

terminates at v

Circuits

FIGURE 20-27 (a) Euler’s bridge problem and

(b) its multigraph representation

Circuits

FIGURE 20-28 Pencil and paper drawings

Circuits

FIGURE 20-29 Connected undirected graphs based on

the drawings in Figure 20-28

Circuits

FIGURE 20-30 The steps to determine an Euler circuit

for the graph in Figure 20-29 b

Circuits

FIGURE 20-30 The steps to determine an Euler circuit

for the graph in Figure 20-29 b

Some Difficult Problems

• Hamilton circuit

 Path that begins at a vertex v, passes through

every vertex in the graph exactly once, and

terminates at v .

• The traveling salesperson problem

 Variation of Hamilton circuit

 Involves a weighted graph that represents a

road map

 Circuit traveled must be the least expensive

Some Difficult Problems

FIGURE 20-31 The three utilities problem

Some Difficult Problems

• Planar graph

 Can draw it in a plane in at least one way so

that no two edges cross

• The four-color problem

 Given a planar graph, can you color the

vertices so that no adjacent vertices have the

same color, if you use at most four colors?

Some Difficult Problems

1. Describe the graphs in Figure 20-32 . For

example, are they directed? Connected?

Complete? Weighted?

2. Use the depth-first strategy and the

breadth-first strategy to traverse the graph

in Figure 20-32 a, beginning with vertex 0.

List the vertices in the order in which each

traversal visits them.

Some Difficult Problems

3. Write the adjacency matrix for the graph in

Figure 20-32 a.

4. Add an edge to the directed graph in

Figure 20-14 that runs from vertex d to

vertex b. Write all possible topological

orders for the vertices in this new graph.

5. Is it possible for a connected undirected

graph with fi ve vertices and four edges to

contain a simple cycle? Explain.

Some Difficult Problems

6. Draw the DFS spanning tree whose root is

vertex 0 for the graph in Figure 20-33 .

7. Draw the minimum spanning tree whose

root is vertex 0 for the graph in Figure 20-

33 .

8. What are the shortest paths from vertex 0

to each vertex of the graph in Figure

20-24 a? (Note the weights of these paths

in Figure 20-25 .)

Some Difficult Problems

FIGURE 20-32 Graphs for Checkpoint

Questions 1, 2, and 3

Some Difficult Problems

FIGURE 20-33 A graph for Checkpoint Questions 6

and 7 and for Exercises 1 and 4

