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Terminology 

• Definition: 

 A set of points that are joined by lines 

• Graphs also represent the relationships 

among data items 

• G = { V , E }; that is, a graph is a set of 

vertices and edges 

• A subgraph consists of a subset of a 

graph’s vertices and a subset of its edges 



Terminology 

FIGURE 20-1 An ordinary line graph 



Terminology 

FIGURE 20-2 (a) A campus map as a graph;  

(b) a subgraph 



Terminology 

FIGURE 20-3 Graphs that are (a) connected;  

(b) disconnected; and (c) complete 



Terminology 

FIGURE 20-4 (a) A multigraph is not a graph;  

(b) a self edge is not allowed in a graph 



Terminology 

• Simple path:  passes through vertex only 

once 

• Cycle: a path that begins and ends at same 

vertex 

• Simple cycle: cycle that does not pass 

through other vertices more than once 

• Connected graph: each pair of distinct 

vertices has a path between them 

 



Terminology 

• Complete graph: each pair of distinct 

vertices has an edge between them 

• Graph cannot have duplicate edges 

between vertices 

 Multigraph: does allow multiple edges 

• When labels represent numeric values, 

graph is called a weighted graph 



Terminology 

• Undirected graphs: edges do not indicate a 

direction 

• Directed graph, or digraph: each edge has 

a direction 



Terminology 

FIGURE 20-5 (a) A weighted graph;  

(b) a directed graph 



Graphs as ADTs 

ADT graph operations 

 Test whether graph is empty. 

 Get number of vertices in a graph. 

 Get number of edges in a graph. 

 See whether edge exists between two given 

vertices. 

 Insert vertex in graph whose vertices have 

distinct values that differ from new vertex’s 

value. 



Graphs as ADTs 

ADT graph operations, ctd. 

 Insert edge between two given vertices in graph. 

 Remove specified vertex from graph and any edges 

between the vertex and other vertices. 

 Remove edge between two vertices in graph. 

 Retrieve from graph vertex that contains given value. 

• View interface for undirected, connected graphs, 

Listing 20-1 .htm code listing  files 

must be in the same 

folder as the . files 

.htm code listing  files 

must be in the same 

folder as the .ppt files 

for these links to 

work 

Chapter20-CodeListing.html
Chapter20-CodeListing.html
Chapter20-CodeListing.html


Implementing Graphs 

FIGURE 20-6 (a) A directed graph and  

(b) its adjacency matrix 



Implementing Graphs 

FIGURE 20-7 (a) A weighted undirected graph and  

(b) its adjacency matrix 



Implementing Graphs 

FIGURE 20-8 (a) A directed graph and  

(b) its adjacency list 



Implementing Graphs 

FIGURE 20-9 (a) A weighted undirected graph and  

(b) its adjacency list 



Graph Traversals 

• Visits all of the vertices that it can reach 

 Happens if and only if graph is connected 

• Connected component is subset of vertices 

visited during traversal that begins at given 

vertex 

 

 



Depth-First Search 

• Goes as far as possible from a vertex before 

backing up 

• Recursive algorithm 

 



Depth-First Search 

• Iterative algorithm, using a stack 

 



Depth-First Search 

• Iterative algorithm, using a stack, ctd. 

 



Depth-First Search 

FIGURE 20-10 Visitation order for (a) a depth-first 

search; (b) a breadth-first search 



Depth-First Search 

FIGURE 20-11 A connected graph with cycles 



Depth-First Search 

FIGURE 20-12 The results of a depth-first traversal, 

beginning at vertex a , of the graph in Figure 20-11 



Breadth-First Search 

• Visits all vertices adjacent to vertex before 

going forward 

 See Figure 20-10b 

• Breadth-first search uses a queue 



Breadth-First Search 

FIGURE 20-13 The results of a breadth-fi rst traversal, 

beginning at vertex a, of the graph in Figure 20-11 



Applications of Graphs 

FIGURE 20-14 A directed graph without cycles 

• Topological Sorting 



Applications of Graphs 

FIGURE 20-15 The graph in Figure 20-14 arranged 

according to the topological orders (a) a, g, 

d, b, e, c, f and (b) a, b, g, d, e, f, c 



Applications of Graphs 

• Topological sorting algorithm 



Applications of Graphs 

FIGURE 20-16 A trace of topSort1 for the  

graph in Figure 20-14 



Applications of Graphs 

FIGURE 20-16 A trace of topSort1 for the  

graph in Figure 20-14 



Applications of Graphs 

FIGURE 20-16 A trace of topSort1 for the  

graph in Figure 20-14 



Applications of Graphs 

FIGURE 20-16 A trace of topSort1 for the  

graph in Figure 20-14 



Applications of Graphs 

FIGURE 20-17 A trace of topSort2 for the  

graph in Figure 20-14 



Spanning Trees 

• Tree: an undirected connected graph 

without cycles 

• Observations about undirected graphs 

1. Connected undirected graph with n vertices 

must have at least n – 1 edges. 

2. Connected undirected graph with n vertices,  

exactly n – 1 edges cannot contain a cycle 

3. A connected undirected graph with n vertices, 

more than n – 1 edges must contain at least 

one cycle 



Spanning Trees 

FIGURE 20-20 The DFS spanning tree rooted at vertex 

a for the graph in Figure 20-11 



Spanning Trees 

• DFS spanning tree algorithm 



Spanning Trees 

 

• BFS spanning  

tree algorithm 



Spanning Trees 

FIGURE 20-21 The BFS spanning tree rooted at vertex 

a for the graph in Figure 20-11 



Minimum Spanning Trees 

FIGURE 20-22 A weighted, connected, undirected graph 



Minimum Spanning Trees 

• Minimum spanning tree algorithm 



Minimum Spanning Trees 

FIGURE 20-23 A trace of primsAlgorithm for the graph in 

Figure 20-22 , beginning at vertex a 



Minimum Spanning Trees 

FIGURE 20-23 A trace of primsAlgorithm for the graph in 

Figure 20-22 , beginning at vertex a 



Minimum Spanning Trees 

FIGURE 20-23 A trace of primsAlgorithm for the graph in 

Figure 20-22 , beginning at vertex a 



Shortest Paths 

• Shortest path between two vertices in a 

weighted graph has smallest edge-weight 

sum 

FIGURE 20-24 (a) A weighted directed graph  

and (b) its adjacency matrix 



Shortest Paths 

• Dijkstra’s shortest-path algorithm 



Shortest Paths 

FIGURE 20-25 A trace of the shortest-path algorithm 

applied to the graph in Figure 20-24 a 



Shortest Paths 

FIGURE 20-26 Checking weight [u] by examining the 

graph: (a) weight [2] in step 2; (b) weight [1] in step 3;  



Shortest Paths 

FIGURE 20-26 Checking weight [u] by examining the 

graph(c) weight [3] in step 3; (d) weight [3] in step 4 



Shortest Paths 

• Dijkstra’s shortest-path algorithm, ctd. 



Shortest Paths 

FIGURE 20-25 A trace of the shortest-path algorithm 

applied to the graph in Figure 20-24 a 



Shortest Paths 

FIGURE 20-26 Checking weight [u] by examining the 

graph: (a) weight [2] in step 2; (b) weight [1] in step 3; 



Shortest Paths 

FIGURE 20-26 Checking weight [u] by examining the 

graph: (c) weight [3] in step 3; (d) weight [3] in step 4 



Circuits 

• Another name for a type of cycle common 

in statement of certain problems 

• Circuits either visit every vertex once or visit 

every edge once 

• An Euler circuit begins at a vertex v, passes 

through every edge exactly once, and 

terminates at v 



Circuits 

FIGURE 20-27 (a) Euler’s bridge problem and  

(b) its multigraph representation 



Circuits 

FIGURE 20-28 Pencil and paper drawings 



Circuits 

FIGURE 20-29 Connected undirected graphs based on 

the drawings in Figure 20-28 



Circuits 

FIGURE 20-30 The steps to determine an Euler circuit 

for the graph in Figure 20-29 b 



Circuits 

FIGURE 20-30 The steps to determine an Euler circuit 

for the graph in Figure 20-29 b 



Some Difficult Problems 

• Hamilton circuit 

 Path that begins at a vertex v, passes through 

every vertex in the graph exactly once, and 

terminates at v . 

•  The traveling salesperson problem 

 Variation of Hamilton circuit 

 Involves a weighted graph that represents a 

road map 

 Circuit traveled must be the least expensive 



Some Difficult Problems 

FIGURE 20-31 The three utilities problem 



Some Difficult Problems 

• Planar graph 

 Can draw it in a plane in at least one way so 

that no two edges cross 

• The four-color problem 

 Given a planar graph, can you color the 

vertices so that no adjacent vertices have the 

same color, if you use at most four colors? 



Some Difficult Problems 

1. Describe the graphs in Figure 20-32 . For 

example, are they directed? Connected? 

Complete? Weighted? 

2. Use the depth-first strategy and the 

breadth-first strategy to traverse the graph 

in Figure 20-32 a, beginning with vertex 0. 

List the vertices in the order in which each 

traversal visits them. 



Some Difficult Problems 

3. Write the adjacency matrix for the graph in 

Figure 20-32 a. 

4. Add an edge to the directed graph in 

Figure 20-14 that runs from vertex d to 

vertex b. Write all possible topological 

orders for the vertices in this new graph. 

5. Is it possible for a connected undirected 

graph with fi ve vertices and four edges to 

contain a simple cycle? Explain. 



Some Difficult Problems 

6. Draw the DFS spanning tree whose root is 

vertex 0 for the graph in Figure 20-33 . 

7. Draw the minimum spanning tree whose 

root is vertex 0 for the graph in Figure 20-

33 . 

8. What are the shortest paths from vertex 0 

to each vertex of the graph in Figure  

20-24 a? (Note the weights of these paths 

in Figure 20-25 .) 



Some Difficult Problems 

FIGURE 20-32 Graphs for Checkpoint  

Questions 1, 2, and 3 



Some Difficult Problems 

FIGURE 20-33 A graph for Checkpoint Questions 6  

and 7 and for Exercises 1 and 4 


