
Hashing

Contents

 Static Hashing
• File Organization
• Properties of the Hash Function
• Bucket Overflow
• Indices

 Dynamic Hashing
• Underlying Data Structure
• Querying and Updating

 Comparisons
• Other types of hashing
• Ordered Indexing vs. Hashing

Static Hashing

 Hashing provides a means for
accessing data without the use of an
index structure.

 Data is addressed on disk by
computing a function on a search
key instead.

Organization

 A bucket in a hash file is unit of
storage (typically a disk block) that
can hold one or more records.

 The hash function, h, is a function
from the set of all search-keys, K, to
the set of all bucket addresses, B.

 Insertion, deletion, and lookup are
done in constant time.

Querying and Updates

 To insert a record into the structure
compute the hash value h(Ki), and
place the record in the bucket
address returned.

 For lookup operations, compute the
hash value as above and search each
record in the bucket for the specific
record.

 To delete simply lookup and remove.

Properties of the Hash Function

 The distribution should be uniform.

• An ideal hash function should assign the
same number of records in each bucket.

 The distribution should be random.

• Regardless of the actual search-keys,
the each bucket has the same number
of records on average

• Hash values should not depend on any
ordering or the search-keys

Bucket Overflow

 How does bucket overflow occur?

• Not enough buckets to handle data

• A few buckets have considerably more
records then others. This is referred to
as skew.

 Multiple records have the same hash value

 Non-uniform hash function distribution.

Solutions

 Provide more buckets then are
needed.

 Overflow chaining

• If a bucket is full, link another bucket to
it. Repeat as necessary.

• The system must then check overflow
buckets for querying and updates. This
is known as closed hashing.

Alternatives

 Open hashing

• The number of buckets is fixed

• Overflow is handled by using the next
bucket in cyclic order that has space.

 This is known as linear probing.

 Compute more hash functions.

Note: Closed hashing is preferred in
database systems.

Indices

 A hash index organizes the search
keys, with their pointers, into a hash
file.

 Hash indices never primary even
though they provide direct access.

Example of Hash Index

Dynamic Hashing

 More effective then static hashing
when the database grows or shrinks

 Extendable hashing splits and
coalesces buckets appropriately with
the database size.

• i.e. buckets are added and deleted on
demand.

The Hash Function

 Typically produces a large number of
values, uniformly and randomly.

 Only part of the value is used
depending on the size of the
database.

Data Structure

 Hash indices are typically a prefix of
the entire hash value.

 More then one consecutive index can
point to the same bucket.

• The indices have the same hash prefix
which can be shorter then the length of
the index.

General Extendable Hash
Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1

Queries and Updates

 Lookup

• Take the first i bits of the hash value.

• Following the corresponding entry in the
bucket address table.

• Look in the bucket.

Queries and Updates (Cont’d)

 Insertion

• Follow lookup procedure

• If the bucket has space, add the record.

• If not…

Insertion (Cont’d)

 Case 1: i = ij
• Use an additional bit in the hash value

 This doubles the size of the bucket address table.

 Makes two entries in the table point to the full
bucket.

• Allocate a new bucket, z.

 Set ij and iz to i

 Point the second entry to the new bucket

 Rehash the old bucket

• Repeat insertion attempt

Insertion (Cont’d)

 Case 2: i > ij

• Allocate a new bucket, z

• Add 1 to ij, set ij and iz to this new value

• Put half of the entries in the first bucket
and half in the other

• Rehash records in bucket j

• Reattempt insertion

Insertion (Finally)

 If all the records in the bucket have
the same search value, simply use
overflow buckets as seen in static
hashing.

Use of Extendable Hash

Structure: Example

Initial Hash structure, bucket size = 2

Example (Cont.)
 Hash structure after insertion of

one Brighton and two Downtown
records

Example (Cont.)
Hash structure after insertion of Mianus record

Example (Cont.)

Hash structure after insertion of three Perryridge records

Example (Cont.)

 Hash structure after insertion of
Redwood and Round Hill records

Comparison to Other Hashing

Methods

 Advantage: performance does not
decrease as the database size
increases

• Space is conserved by adding and
removing as necessary

 Disadvantage: additional level of
indirection for operations

• Complex implementation

Ordered Indexing vs. Hashing

 Hashing is less efficient if queries to
the database include ranges as
opposed to specific values.

 In cases where ranges are infrequent
hashing provides faster insertion,
deletion, and lookup then ordered
indexing.

