


» The scanning/lexical analysis phase of a compiler 
performs the task of reading the source program 
as a file of characters and dividing up into 
tokens. 

» Usually implemented as subroutine or co-routine 
of parser. 

» Front end of compiler. 



» Each token is a sequence of characters that 
represents a unit of information in the source 
program. 

 



» Keywords which are fixed string of letters .eg: “if”, 
“while”. 

» Identifiers which are user-defined strings 
composed of letters and numbers. 

» Special symbols like arithmetic symbols. 

 



» Scanners perform pattern matching process. 

» The techniques used to implement lexical analyzers 
can also be applied to other areas such as query 
languages and information retrieval systems. 

» Since pattern directed programming is widely 
useful, pattern action language called Lex for 
specifying lexical analyzers. 

» In lex , patterns are specified by regular 
expressions, and a compiler for lex can generate an 
efficient finite-automaton recognizer for the 
regular expression. 
 



» A software tool that automates the 
construction of lexical analyzers allows people 
with different backgrounds to use pattern 
matching in their own areas. 

» Jarvis[1976] Lexical analyzer generator to create 
a program that recognizes  imperfections in 
printed circuit boards. 

» The circuits are digitally scanned and 
converted into “strings” of line segments at 
different angles. 

» The “lexical analyzer” looked for patterns 
corresponding to imperfections in the string of 
line segments. 



» It can utilize the best-known pattern-matching 
algorithms and thereby create efficient lexical 
analyzers for people who are not experts in 
pattern-matching techniques. 



» Lexical analyzer is the first phase of a compiler. 

» Its main task is to read input characters and produce as 
output a sequence of tokens that parser uses for syntax 
analysis. 





Type Examples 

ID foo    n_14   last 

NUM 73 00  517 082  

REAL 66.1 .5 10. 1e67 5.5e-10 

IF if 

COMMA , 

NOTEQ != 

LPAREN ( 

RPAREN ) 



Type Examples 

comment /* ignored */ 

preprocessor directive #include <foo.h> 

#define NUMS 5, 6 

macro NUMS 

whitespace \t   \n \b 



» Separation of the input source code into tokens. 

» Stripping out the unnecessary white spaces from 
the source code. 

» Removing  the comments from the source text. 

» Keeping track of line numbers while scanning the 
new line characters. These line numbers are used 
by the error handler to  print the error messages. 

» Preprocessing of macros. 



» There are several reasons for separating the 
analysis phase of compiling into lexical analysis 
and parsing: 

» It leads to simpler design of the parser as the 
unnecessary tokens can be eliminated by  scanner. 

» Efficiency of the process of compilation is 
improved. The lexical analysis phase is most time 
consuming phase in compilation. Using specialized 
buffering to improve the speed of compilation. 

» Portability of the compiler is enhanced as the 
specialized symbols and characters(language and 
machine specific)  are isolated during this phase. 

 

 



» Connected with lexical analysis are three important 
terms with similar meaning. 

» Lexeme 

» Token 

» Patterns 

 



» A token is a pair consisting of a token name and 
an optional attribute value. Token name: 
Keywords, operators, identifiers, constants, literal strings, 
punctuation symbols(such as commas,semicolons) 

» A  lexeme is a sequence of characters in the 
source program that matches the pattern for a 
token and is identified by the lexical analyzer as 
an instance of that token. E.g.Relation 
{<.<=,>,>=,==,<>} 

 

 



» A pattern is a description of the form that 
the lexemes of token may take. 

» It gives an informal or formal description of 
a token. 

» Eg: identifier 

» 2 purposes 

» Gives a precise description/ specification of 
tokens. 

» Used to automatically generate a lexical 
analyzer 

 



» const pi = 3.1416; 

» The substring pi is a lexeme for the token 
“identifier.” 



» x=x*(acc+123) 





» 1.) let us consider a statement “fi(a==f)”. Here “fi” 
is a misspelled keyword. This error is not 
detected in lexical analysis as “fi” is taken as an 
identifier. This error is  then detected in other 
phases of compilation. 

» 2.) in case the lexical analyzer is not able to 
continue with the process of compilation, it 
resorts to panic mode of error recovery.  

• Deleting the successive characters from the 
remaining input until a token is detected. 

• Deleting extraneous characters. 

 



• Inserting missing characters 

• Replacing an incorrect character by a correct 
character. 

• Transposing two adjacent characters 

 



» Is the strategy generally followed by the 
lexical analyzer to correct the errors in the 
lexemes. 

» It is nothing but the minimum number of the 
corrections to be made to convert an invalid 
lexeme to a valid lexeme. 

» But it is not generally used in practice 
because it  is too costly to implement. 

 





» Scanners are special pattern matching 
processors. 

» For representing patterns of strings of 
characters, Regular Expressions(RE) are used.  

» A regular expression (r) is defined by set of 
strings that matches it. 

» This set is called as the language generated by 
the regular expression and is represented as 
L(r). 

» The set of symbols in the language is called the 
alphabet of the language is represented as ∑. 

 



» An alphabet is a finite set of symbols. 

» Example 

» A set of alphabetic characters is represented as 
L={A,…,Z,a,…,z} and set of digits is represented as 
D={0,1,…,9}. 

» LUD is a language. 

» Strings over LUD- Begin,Max1, max1, 123, €… 

 





» Choice among alternates 

» Concatenation 

» Repetition 

 



» Indicated by metacharacter ‘|’(vertical bar) 

» r|s 

» R.E that matches any string that is matched either 
by r or s. 

» L(r|s)=  L(r) U L(s) 



» rs 

» It matches any string that is a concatenation of 2 
strings, the first of which matches r and second 
of which matches s. 

» L(rs) = L(r) L(s)  

 

 



» Also called Kleene closure 

» Represents any finite concatenation of strings 
each matches strings from L(r). 

» r* 

» Let S={a}, then L(a*)={€, a, aa, aaa,…} 

» S*={€}USUSSUSSSU….= 

»                                        


