LEXICAL ANALYSIS
& ITS ROLE

Lexical analysis

» The scanning/lexical analysis phase of a compiler
performs the task of reading the source program
as a file of characters and dividing up into
tokens.

» Usually implemented as subroutine or co-routine
of parser.

» Front end of compiler.

tokens

» Each token is a sequence of characters that
represents a unit of information in the source
program.

Example-tokens

» Keywords which are fixed string of letters .eg: “if’
“while”.

» ldentifiers which are user-defined strings
composed of letters and numbers.

» Special symbols like arithmetic symbols.

4

-

Applications

» Scanners perform pattern matching process.

» The techniques used to implement lexical analyzers
can also be applied to other areas such as query
languages and information retrieval systems.

» Since pattern directed programming is widely
useful, pattern action language called Lex for
specifying lexical analyzers.

» |In lex, patterns are specified by regular
expressions, and a compiler for lex can generate an
efficient finite-automaton recognizer for the
regular expression.

» A software tool that automates the
construction of lexical analyzers allows people
with different backgrounds to use pattern
matching in their own areas.

» Jarvis[1976] Lexical analyzer generator to create
a program that recognizes imperfections in
printed circuit boards.

» The circuits are digitally scanned and
converted into “strings” of line segments at
different angles.

» The “lexical analyzer” looked for patterns
corresponding to imperfections in the string of
line segments.

Advantage-lexical analyzer generator

» |t can utilize the best-known pattern-matching
algorithms and thereby create efficient lexical
analyzers for people who are not experts in
pattern-matching techniques.

The Role of Lexical Analyzer

» Lexical analyzer is the first phase of a compiler.

» |ts main task is to read input characters and produce as
output a sequence of tokens that parser uses for syntax

analysis.
lexical token o
source .ex;ca -r parser |- >
program anatryze get next
token
symbol
table

Fig. 3.1. Interaction of lexical analyzer with parser.

A Simple Lexical Analyzer

Keyword?

[dentifier?
E=M*C**)) mmm) [dcrifc

Operators’

il

[dentifier pattern matching

Example Tokens

Type Examples

Example NonTokens

Type Examples

Tasks —lexical analyzer

» Separation of the input source code into tokens.

» Stripping out the unnecessary white spaces from
the source code.

» Removing the comments from the source text.

» Keeping track of line numbers while scanning the
new line characters. These line numbers are used
by the error handler to print the error messages.

» Preprocessing of macros.

Issues in Lexical Analysis

» There are several reasons for separating the
analysis phase of compiling into lexical analysis
and parsing:

» |t leads to simpler design of the parser as the
unnecessary tokens can be eliminated by scanner.

» Efficiency of the process of compilation is
improved. The lexical analysis phase is most time
consuming phase in compilation. Using specialized
buffering to improve the speed of compilation.

» Portability of the compiler is enhanced as the
specialized symbols and characters(language and
machine specific) are isolated during this phase.

)

Tokens, Patterns, Lexemes

» Connected with lexical analysis are three important
terms with similar meaning.

» Lexeme
» Token
» Patterns

Tokens, Patterns, Lexemes

» A token is a pair consisting of a token name and
an optional attribute value. Token name:
Keywords, operators, identifiers, constants, literal strings,
punctuation symbols(such as commas,semicolons)

» A lexeme is a sequence of characters in the
source program that matches the pattern for a
token and is identified by the lexical analyzer as
an instance of that token. E.g.Relation
{<.<=,>>===<>}

)

»

»

»

»

»

»

A pattern is a description of the form that
the lexemes of token may take.

It gives an informal or formal description of
a token.

Eg: identifier
2 purposes

Gives a precise description/ specification of
tokens.

Used to automatically generate a lexical
analyzer

Example of tokens

MRS ER RTINS

» The substring pi is a lexeme for the token
“identifier.”

TOKEN | SAMPLE LEXEMES | INFORMAL DESCRIPTION OF PATTERN

=N
[

relation <,"_<.:-f,'_3-;11:?5:_3%;*' < Qr;:' OF = 0F <> 0F »= 0F »

thcrz_io}lowcd by letters and digits
| any numeric constant
;._,-:dn_yf{chdrdcters between " and " except "

=W
s
F._I
{‘}
e
=
B
ri*

num 31416,_0“
literal | "core dumped

Identify tokens and lexemes?

» x=x*(acc+123)

Lexical Analysis

input: x=x * (acct+123)

token lexemes
identifier X
equal =
identifier X
star *
left-paren (
identifier acc
plus +
integer 123
right-paren |)

Lexical errors

» 1.) let us consider a statement “fi(a==f)". Here “fi”
is a misspelled keyword. This error is not
detected in lexical analysis as “fi” is taken as an
identifier. This error is then detected in other
phases of compilation.

» 2.) in case the lexical analyzer is not able to
continue with the process of compilation, it
resorts to panic mode of error recovery.

e Deleting the successive characters from the
remaining input until a token is detected.

* Deleting extraneous characters.

* Inserting missing characters

* Replacing an incorrect character by a correct
character.

* Transposing two adjacent characters

Minimum distance error correction

» |s the strategy generally followed by the
lexical analyzer to correct the errors in the
lexemes.

» It is nothing but the minimum number of the
corrections to be made to convert an invalid
lexeme to a valid lexeme.

» But it is not generally used in practice
because it is too costly to implement.

SPECIFICATION OF
TOKENS USING
REGULAR
EXPRESSION

Specification of tokens

» Scanners are special pattern matching
processors.

» For representing patterns of strings of
characters, Regular Expressions(RE) are used.

» A regular expression (r) is defined by set of
strings that matches it.

» This set is called as the language generated by
the regular expression and is represented as
L(r).

» The set of symbols in the language is called the
alphabet of the language is represented as .)

» An alphabet is a finite set of symbols.

» Example

» A set of alphabetic characters is represented as
L={A,...,Z,3,...,2} and set of digits is represented as
D={0,1,...,9}

» LUD is a language.
» Strings over LUD- Begin,Max1, max1, 123, £€...

Operations on Languages

OPERATION ~ DEFINITION

union of L and M
written LUM

concatenation of L and M|
written LM

Kleene closure of L

written L*

positive closure of L

written L

Regular expression operations

» Choice among alternates
» Concatenation

» Repetition

1. CHOICE AMONG ALTERNATES

» Indicated by metacharacter ‘|’(vertical bar)
» r|s

» R.E that matches any string that is matched either
by r ors.

» L(r|s)= L(r) U L(s)

2. CONCATENATION

» IS

» It matches any string that is a concatenation of 2
strings, the first of which matches r and second
of which matches s.

» L(rs) = L(r) L(s)

3. REPETITION

» Also called Kleene closure

» Represents any finite concatenation of strings
each matches strings from L(r).

» r¥
» Let S={a}, then L(a*)={€, a, aa, aaa,...}
» S*={€}USUSSUSSSU....=

»

- (8B
Or’_ﬂ

