
Introduction to Compiler and its phases 1

Compiler

• A compiler is a large program that can read a program in one language the source
language - and translate it into an equivalent program in another language - the target
language;

• An important role of the compiler is to report any errors in the source program that it
detects during the translation process

• If the target program is an executable machine-language program, it can then be called
by the user to process inputs and produce outputs.

2

Source

Program
Compiler

Target

Program

Error messages Output

Input

Example

Source Code Target Code

3

Interpreter

An interpreter is another common kind of language processor. Instead of producing a target
program as a translation, an interpreter appears to directly execute the operations specified in the
source program or inputs supplied by the user

The machine-language target program produced by a compiler is usually much faster than an
interpreter at mapping inputs to outputs . An interpreter, however, can usually give better error
diagnostics than a compiler, because it executes the source program statement by statement.

4

Source

Program

Interpreter

Error messages

Input

Output

Working Process of Compilers Vs Interpreter

Compilation Process:

Interpretive Process:

5

Source

 program

Data

Object

program
Results

Data

Compiler
Executing

Computer

Result
Source

 program Interpreter

Compile time
Run time

Sr. Compiler Interpreter

1 Compiler Takes Entire program as input Interpreter Takes Single instruction as

input .

2 Intermediate Object Code is Generated No Intermediate Object Code is

Generated

3 Conditional Control Statements are

Executes faster

Conditional Control Statements are

Executes slower

4 Memory Requirement : More(Since

Object Code is Generated)

Memory Requirement is Less

5 Program need not be compiled every time Every time higher level program is
converted into lower level program

6 Errors are displayed after entire

program is checked

Errors are displayed for every

instruction interpreted (if any)

7 Programming language like C, C++ use

compilers.

Programming language like Python,

Ruby use interpreters.

6

Context of a Compiler

• The programs which assist the compiler to
convert a skeletal source code into executable
form make the context of a compiler and is as
follows:

• Preprocessor:
 The preprocessor scans the source code and

includes the header files which
 contain relevant information for various
functions.

• Compiler:
 The compiler passes the source code through

various phases and generates the
 target assembly code.

7

Cont….

• Assembler:
 The assembler converts the assembly code into relocatable machine code or object

 code. Although this code is in 0 and 1 form, but it cannot be executed because this
 code has not been assigned the actual memory addresses.

• Loader/Link Editor:
 It performs two functions. The process of loading consists of taking machine code,

 altering the relocatable addresses and placing the altered instructions and data in
 memory at proper location.

 The link editor makes a single program from several files of relocatable machine
 code. These files are library files which the program needs.

 The loader/link editor produces the executable or absolute machine code.

8

Phases of Compiler Design

A compiler operates in phases. A phase is a logically interrelated operation
that takes source program in one representation and produces output in
another representation. The phases of a compiler are shown in below

There are two phases of compilation.

 Analysis (Machine Independent/Language Dependent)

 Synthesis(Machine Dependent/Language independent)

Compilation process is partitioned into no-of-sub processes called ‘phases’.

9

10

Phase-1: Lexical Analysis

• Lexical analyzer reads the stream of characters making up the source
program and groups the characters into meaningful sequences called
lexeme

• For each lexeme, the lexical analyzer produces a token of the form that it
passes on to the subsequent phase, syntax analysis

(token-name, attribute-value)

• Token-name: an abstract symbol is used during syntax analysis.

• attribute-value: points to an entry in the symbol table for this token.

11

Example:

newval := oldval + 12 Tokens:

 newval Identifier

 = Assignment operator

 oldval Identifier

 + Add operator

 12 Number

Lexical analyzer truncates white spaces and also removes errors.

12

Phase-2: Syntax Analysis

• Also called Parsing or Tokenizing.

• The parser uses the first components of the tokens produced by the lexical
analyzer to create a tree-like intermediate representation that depicts the
grammatical structure of the token stream.

• A typical representation is a syntax tree in which each interior node
represents an operation and the children of the node represent the
arguments of the operation

13

Example: 14

Phase-3: Semantic Analysis

• The semantic analyzer uses the syntax tree and the information in the
symbol table to check the source program for semantic consistency with
the language definition.

• Gathers type information and saves it in either the syntax tree or the
symbol table, for subsequent use during intermediate-code generation.

• An important part of semantic analysis is type checking, where the
compiler checks that each operator has matching operands.

• For example, many programming language definitions require an array
index to be an integer; the compiler must report an error if a floating-point
number is used to index an array.

• Example: newval := oldval+12

 The type of the identifier newval must match with the type of expression (oldval+12).

15

Example:

• Semantic analysis

• Syntactically correct, but semantically incorrect

example:

 sum = a + b;

 int a;

double sum; data type mismatch
char b;

Semantic records

a integer

sum double

b char

16

Phase-4: Intermediate Code Generation

After syntax and semantic analysis of the source program, many compilers
generate an explicit low-level or machine-like intermediate representation
(a program for an abstract machine). This intermediate representation
should have two important properties:

• it should be easy to produce and

• it should be easy to translate into the target machine.

The considered intermediate form called three-address code, which consists
of a sequence of assembly-like instructions with three operands per
instruction. Each operand can act like a register.

This phase bridges the analysis and synthesis phases of translation.

17

Example:

newval := oldval + fact * 1

Id1 := Id2 + Id3 * 1

Temp1 = into real (1)

Temp2 = Id3 * Temp1

Temp3 = Id2 + Temp2

Id1 = Temp3

18

Phase-5: Code Optimization

• The compiler looks at large segments of the program to decide how to
improve performance

• The machine-independent code-optimization phase attempts to improve the
intermediate code so that better target code will result.

• Usually better means:

• faster, shorter code, or target code that consumes less power.

• There are simple optimizations that significantly improve the running time
of the target program without slowing down compilation too much.

• Optimization cannot make an inefficient algorithm efficient - “only makes
an efficient algorithm more efficient”

19

Example:

• The above intermediate code will be optimized as:

Temp1 = Id3 * 1

Id1 = Id2 + Temp1

20

Phase-6: Code Generation

• The last phase of translation is code generation.

• Takes as input an intermediate representation of the source program and
maps it into the target language

• If the target language is machine, code, registers or memory locations are
selected for each of the variables used by the program.

• Then, the intermediate instructions are translated into sequences of
machine instructions that perform the same task.

• A crucial aspect of code generation is the judicious assignment of registers
to hold variables.

21

Example:

 Id1 := Id2 + Id3 * 1

 MOV R1,Id3

 MUL R1,#1

 MOV R2,Id2

 ADD R1,R2

 MOV Id1,R1

22

23

Symbol-Table Management

• The symbol table is a data structure containing a record for each variable
name, with fields for the attributes of the name.

• The data structure should be designed to allow the compiler to find the
record for each name quickly and to store or retrieve data from that record
quickly

• These attributes may provide information about the storage allocated for a
name, its type, its scope (where in the program its value may be used), and
in the case of procedure names, such things as the number and types of its
arguments, the method of passing each argument (for example, by value or
by reference), and the type returned.

24

new Val Id1 & attribute

old Val Id2 & attribute

fact Id3 &attribute

Error Handling Routine:

• One of the most important functions of a compiler is the detection and
reporting of errors in the source program. The error message should allow
the programmer to determine exactly where the errors have occurred.
Errors may occur in all or the phases of a compiler.

• Whenever a phase of the compiler discovers an error, it must report the
error to the error handler, which issues an appropriate diagnostic message.
Both of the table-management and error-Handling routines interact with all
phases of the compiler.

25

One pass compiler

• One pass compiler passes through the source code of each compilation unit
only once.

• Their efficiency is limited because they don’t produce intermediate codes
which can be refined easily.

• One pass compilers very common because of their simplicity.

• Check for semantic errors and generate code.

• They are faster then multi pass compilers.

• Also known as Narrow compiler.

• Pascal and C are both languages that allow one pass compilation.

26

Multi-pass compilers

• The input is passed through certain phases in one pass. Then the output of
previous phases is passed through other phases in second pass and so on
until the desired output is generated.

• It requires less memory because each pass takes output of previous phase
as input.

• It may create one or more intermediate code.

• Also known as wide compiler.

• Modula-2 is a language whose structure requires that a compiler has at
least two passes.

27

The phases of a compiler are collected into front end and back end.

The FRONT END consists of those phases that depend primarily on
the source program. These normally include Lexical and Syntactic
analysis, Semantic analysis ,and the generation of intermediate code.

A certain amount of code optimization can be done by front end as
well.

The BACK END includes the code optimization phase and final
code generation phase, along with the necessary error handling and
symbol table operations.

The front end Analyzes the source program and produces
intermediate code while the back end Synthesizes the target program
from the intermediate code.

Front End vs Back End of a Compilers

28

Cont….

The front end phase consists of those phases that primarily depend on
source program and are independent of the target machine.

Back end phase of compiler consists of those phases which depend on
target machine and are independent of the source program.

Intermediate representation may be considered as middle end, as it
depends upon source code and target machine.

29

30

