
SYMBOL TABLE DESIGN

THE STRUCTURE OF A COMPILER

• Up to this point we have treated a compiler as a single box
that maps a source program into a semantically equivalent
target program.

COMPILER Source Program Target Program

WHAT’S INSIDE THIS BOX?

• If we open up this box a little, we see that there are two
parts to this mapping:

ANALYSIS SYNTHESIS

 L
 E
 X
 I
 C
 A
 L

 A
 N
 A
 L
 Y
 Z
 E
 R

 S
 Y
 N
 T
 A
 X

 A
 N
 A
 L
 Y
 Z
 E
 R

Stream

of

tokens

 S
 Y
 N
 T
 A
 X

 A
 N
 A
 L
 Y
 Z
 E
 R

Parse

tree

 C
 O
 D
 E

 O
 P
 T
 I
 M
 I
 Z
 E
 R

 C
 O
 D
 E

 G
 E
 N
 E
 R
 A
 T
 O
 R

 INTER

MEDIA
TE

 CODE

GENERA
T -
OR

 SYMBOL TABLE

INTER-
MEDIATE

CODE
GENER-
ATOR

Analysis Synthesis

S
E
M
A
N
T
I
C

ANALYSIS

Breaks up the source
program into
constituent pieces and
imposes a
grammatical
structure on them. It
then uses this
structure to create an
intermediate
representation of the
source program.

If the analysis part
detects that the
source program is
either syntactically ill
formed or
semantically unsound,
then it must provide
informative messages,
so the user can take
corrective action.

The analysis part also
collects information
about the source
program and stores it
in a data structure
called a symbol
table, which is passed
along with the
intermediate
representation to the
synthesis part.

SYNTHESIS

• The synthesis part constructs the desired target program
from the intermediate representation and the information
in the symbol table

• Front end of compiler ANALYSIS

• Back end of compiler SYNTHESIS

COMPILERS ROLE??

• An essential function of a compiler –

• These attributes may provide information about the
storage allocated for a name , its type and its scope ,
procedure names ,number and types of its arguments, the
method of passing each argument and the type returned

Record the variable names used in the source
program and collect information about various

attributes of each name.

SO , WHAT EXACTLY IS SYMBOL TABLE??

 A symbol table is a necessary component because

 Declaration of identifiers appears once in a program

 Use of identifiers may appear in many places of the
program text

 Symbol tables are data structures that are used by
compilers to hold information about source-program
constructs.

INFORMATION PROVIDED BY

SYMBOL TABLE

 Given an Identifier which name is it?
 What information is to be associated with a name?
 How do we access this information?

SYMBOL TABLE - NAMES

NAME

Variable and labels

Constant

RecordField

Record

Parameter

Procedure

Array and files

SYMBOL TABLE-ATTRIBUTES
• Each piece of information associated with a name is called

an attribute.

• Attributes are language dependent.

• Different classes of Symbols have different Attributes

Variable,
Constants

• Type , Line
number
where
declared ,
Lines where
referenced ,
Scope

Procedure or
function

• Number of
parameters,
parameters
themselves,
result type.

Array

• # of
Dimensions,
Array
bounds.

WHO CREATES SYMBOL TABLE??

 Identifiers and attributes are entered by the analysis phases
when processing a definition (declaration) of an
identifier

 In simple languages with only global variables and implicit
declarations:

 The scanner can enter an identifier into a symbol table
 if it is not already there

 In block-structured languages with scopes and explicit
declarations:

 The parser and/or semantic analyzer enter identifiers
and corresponding attributes

USE OF SYMBOL TABLE

• Symbol table information is used by the analysis and
synthesis phases

• To verify that used identifiers have been defined
(declared)

• To verify that expressions and assignments are
semantically correct – type checking

• To generate intermediate or target code

IMPLEMENTATION OF SYMBOL TABLE

• Each entry in the symbol table can be implemented as a
record consisting of several field.

• These fields are dependent on the information to be saved
about the name

• But since the information about a name depends on the
usage of the name the entries in the symbol table records
will not be uniform.

• Hence to keep the symbol tables records uniform some
information are kept outside the symbol table and a
pointer to this information is stored in the symbol table
record.

 a int LB1

 UB1

SYMBOL TABLE

A pointer steers the symbol table to remotely stored information
for array a.

WHERE SHOULD NAMES BE HELD??

• If there is modest upper bound on the length of the name ,
then the name can be stored in the symbol table record
itself.

• But If there is no such limit or the limit is already reached
then an indirect scheme of storing name is used.

• A separate array of characters called a ‘string table’ is
used to store the name and a pointer to the name is kept in
the symbol table record

 int

 LB1

 UB1

A B

SYMBOL TABLE

STRING TABLE

SYMBOL TABLE AND SCOPE

• Symbol tables typically need to support multiple
declarations of the same identifier within a program.

• We shall implement scopes by setting up a separate
symbol table for each scope.

The scope of a declaration is the portion of a program
to which the declaration applies.

 The rules governing the scope of names in a block-
structured language are as follows

 1. A name declared within a block B is valid only
within B.

 2. If block B1 is nested within B2, then any name that
any name that is valid for B2 is also valid for
B1,unless the identifier for that name is re-declared
in B1.

 The scope rules required a more complicated symbol table
organization than simply a list association between names
and attributes.

 Each table is list names and there associated attributes
and the tables are organized into a stack.

z Real

Y Real

x Real

q Real

a Real

x Real

P Proc

Y Integer

X Integer

Symbol table for block q

Symbol table for p

Symbol table for main

SYMBOL TABLE ORGANIZATION

TOP

Var x,y : integer

Procedure P:
Var x,a :boolean;

Procedure q:
Var x,y,z : real;

begin
……
end
begin
…..
End

