
Three
Address Code

Generation

Intermediate Code

▪ An language b/w source and target language

▪ Provides an intermediate level of abstraction

▪ More details than the source

▪ Fewer details than the target

SOURCE LANGUAGE TARGET LANGUAGE

Intermediate Code

Benefits of intermediate code generation

▪ A compiler for different machines can be created by attaching
different backend to the existing front ends of each machine

▪ A compiler for different source languages (on the same
machine) can be created by proving different front ends for
corresponding source language to existing back end.

▪ A machine independent code optimizer can be applied to
intermediate code in order to optimize the code generation

Three Address Code

▪ Is an intermediate code used by optimizing compilers to aid in the implementation of
code-improving transformations.

▪ Each TAC instruction has at most three operands and is typically a combination of
assignment and a binary operator

▪ In TAC, there is at most one operator on the right side of an instruction. That is no built-
up arithmetic expressions are permitted

Example : x + y * z

 t1 = y * z

 t2 = x + t1

t1 and t2 are compiler-generated temporary names

▪ Statements in this language are of the form:

 x:=y op z

▪ where x, y and z are names, constants or compiler-generated
temporary variables, and ‘op’ stands for any operator

▪ Three Address Code is a linearized representation of a syntax trees or a
DAG

T1 = b – c
T2 = a * t1
T3 = a + t2
T4 = t1 * d
T5 = t3 + t4

Data structures for three address codes

 Quadruples

 Has four fields: op, arg1, arg2 and result

 Triples

 Temporaries are not used and instead references to instructions are
made

 Indirect triples

 In addition to triples we use a list of pointers to triples

Example

▪ b * minus c + b * minus c
t1 = minus c

t2 = b * t1

t3 = minus c

t4 = b * t3

t5 = t2 + t4

a = t5

Three address code

minus
*

minus c t3
*
+

=

c t1
b t2 t1

b t4 t3

t2 t5 t4

t5 a

arg1 result arg2 op

Quadruples

minus
*

minus c

*
+

=

c
b (0)

b (2)

(1) (3)

a

arg1 arg2 op

Triples

(4)

0
1
2

3
4

5

minus
*

minus c

*
+

=

c
b (0)

b (2)

(1) (3)

a

arg1 arg2 op

Indirect Triples

(4)

0
1
2

3
4

5

(0)
(1)

(2)

(3)
(4)

(5)

op
35
36
37

38
39

40

Disadvantage Of quadruples

▪ Temporary names must be entered into the symbol table as they are
created.

▪ This increases the time and size of the symbol table.

Pro: easy to rearrange code for global optimization

Cons: lots of temporaries

Disadvantage Of TRIPLES

▪ Moving a statement that define a temporary value
requires us to change all references to that statement
in arg1 and arg2 arrays. This problem makes triple
difficult to use in an optimizing compiler.

Types of Three-Address Code

▪ Assignment statement x := y op z
▪ Assignment statement x := op y
▪ Copy statement x := y
▪ Unconditional jump goto L
▪ Conditional jump if x relop y goto L
▪ Procedural call param x call p

 return y

Assignment Statement

▪ Assignment statements can be in the following two forms
 1. x:=op y
 2. x:=y op z
 First statement op is a unary operation. Essential unary operations

are unary minus, logical negation, shift operators and conversion
operators.

 Second statement op is a binary arithmetic or logical operator.

Three-Address Statements

A popular form of intermediate code used in optimizing
compilers is three-address statements.
 Source statement:
 x = a + b c + d
 Three address statements with temporaries t1 and t2:
 t1 = b c
 t2 = a + t1
 x = t2 + d

Jump Statements

 source statement like if-then-else and while-do cause jump in
the control flow through three address code so any statement in
three address code can be given label to make it the target of a
jump.

The statement
 goto L
Cause an unconditional jump to the statement with label L. the

statement

 if x relop y goto L
Causes a jump to L condition if and only if
Boolean condition is true.
This instruction applies relational operator relop (>,=,<, etc.)
to x and y, and executes statement L next of x statement x relop y. If

not, the three address statement following if x relop y goto L is
executed next, as in the usual sequence.

Procedure Call / Return

A procedure call like P(A1,A2, A3,……….An) may have to many
addresses for one statement in three-address code so it is shown
as a sequence of n +1 statements’

Param A1

Param A2

M

Param An

Call p,n

Where P is the name of the procedure and and n is
a integer indicating the number of actual
parameters in the call.

This information is redundant, as n can be
computed by counting the number of par am
statements.

It is a convenience to have n available with the call
statement.

Indexed Assignment

Indexed assignment of the form A:=B[I] and A[I]:=B.

the first statement sets A to the value in the location I
memory units beyond location B.

In the later statement A [I]:=B, sets the location I units
beyond A to the value of B.

In Both instructions ,A, B, and I are assumed to refer data
objects and will represented by pointers to the symbol
table.

Address and Pointer Assignment

Address and pointer assignment
 x := &y
 x := *y
 *x := y

First statement, sets the value of x to be the location of y.

In x := *y, here y is a pointer or temporary whose r-value is a
location. The r-value of x is made equal to the contents of that
location.

*x := y sets the r-value of the object pointed to by a to the r-value of
y.

Summary

▪ Intermediate Code

▪ 3 Address Code

▪ Data Structures Of 3 Address Code

▪ Types of Three-Address Code

