
PRESENTATION LAYER

OUTLINE

1. Presentation Layer

2. Typical Components in the Presentation Layer

3. General design Considerations

4. Specific design issues

5. Technology Considerations

6. Performance Considerations

7. Design Steps for the presentation layer

8. Relevant Design Patterns

PRESENTATION LAYER

 The presentation layer contains the components

that implement and display the user interface and

manage user interaction.

 This layer includes controls for user input and

display, in addition to components that organize

user interaction.

TYPICAL COMPONENTS IN THE

PRESENTATION LAYER

1. User Interface components: These are the

application's visual elements used to display

information to the user and accept user input.

1. Presentation Logic components: Presentation logic

is the application code that defines the logical behavior

and structure of the application in a way that is

independent of any specific user interface

implementation. The presentation logic components

may include Presenter, Presentation Model, and

ViewModel components.

GENERAL DESIGN

CONSIDERATIONS

1. Choose the appropriate application type

2. Choose the appropriate UI technology

3. Use the relevant patterns

4. Design for separation of concerns

5. Consider human interface guidelines

6. Adhere to user driven design principles

SPECIFIC DESIGN ISSUES

 There are several common issues that you must

consider as your develop your design. These

issues can be categorized into specific areas of the

design.

 Caching

 Communication

 Composition

 Exception Management

 Navigation

 User Experience

 User Interface

 Validation

CACHING

 Caching improves application performance and UI responsiveness.

 You can use data caching in the presentation layer to optimize data lookups

and avoid network round trips, and to store the results of expensive or

repetitive processes to avoid unnecessary duplicated processing.

 Guidelines for designing the caching strategy:

 Choose the appropriate location for your cache, such as in memory or on

disk.

 Example: If your application is deployed in Web farm, avoid using local

caches that must be synchronized. In general, for Web and application

farm deployments, consider using a transactional resource manager such as

Microsoft SQL Server, or a product that supports distributed caching such

as the Danga Interactive "Memcached" technology or the Microsoft

"Velocity" caching mechanism.

 Consider caching data in a ready to use format when working with an in-

memory cache.

 For example, use a specific object instead of caching raw database data.

However, avoid caching volatile data as the cost of caching may exceed that

of recreating or fetching the data again if it constantly changes.

 Do not cache sensitive data unless you encrypt it.

 Do not depend on data still being in your cache; it may have been removed.

Also, consider that the cached data may be stale.

 Consider authorization rights for cached data. Only cache data for which you

can apply appropriate authorization if users in different roles may access the

data.

 If you are using multiple threads, ensure that all access to the cache is thread-

safe.

COMMUNICATION

 Handle long-running requests with user responsiveness in mind, as well

as code maintainability and testability.

 Guidelines for designing request processing:

 Consider using asynchronous operations or worker threads to avoid

blocking the UI for long-running actions in Windows Forms and WPF

applications. In ASP.NET, consider using AJAX to perform

asynchronous requests. Provide feedback to the user on the progress of

the long running action.

 Avoid mixing your UI processing and rendering logic.

 When making expensive calls to remote sources or layers, such as when

calling Web services or querying a database, consider if it makes more

sense to make these callschatty (many smaller requests) or chunky (one

large request).

COMPOSITION

 Composition patterns help you to implement sharing, reuse, and replacement

of presentation logic and views.

 Guidelines for designing your UI composition strategy:

 Avoid dependencies between components.

 Consider creating templates with placeholders.

 Consider composing views from reusable modular parts.

 Be cautious when using layouts generated dynamically at run time, which can

be difficult to load and maintain. Investigate patterns and third-party libraries

that support dynamic layout and injection of views and presentation at

runtime.

 When communicating between presentation components, consider using

loosely coupled communication patterns such as Publish/Subscribe. This will

lower the coupling between the components and improve testability and

flexibility.

EXCEPTION MANAGEMENT

 Design a centralized exception management mechanism for your

application that catches and manages unexpected exceptions in a
consistent way.

 Guidelines for designing your exception management strategy:

 Provide user friendly error messages to notify users of errors in the
application, but ensure that you avoid exposing sensitive data in error
pages, error messages, log files, and audit files.

 Ensure that you catch exceptions that will not be caught elsewhere (such
as in a global error handler), and clean up resources and state after an
exception occurs.

 Differentiate between system exceptions and business errors. In the case
of business errors, display a user friendly error message and allow the
user to retry the operation. In the case of system exceptions, check to see
if an issue such as a service or database failure caused the exception,
display a user friendly error message, and log the error message to assist
in troubleshooting.

 Only catch exceptions that you can handle, and avoid the use of custom
exceptions when not necessary. Do not use exceptions to control
application logic flow.

NAVIGATION

 Design your navigation strategy so that users can navigate easily through

your screens or pages.

 Ensure that you display navigation links and controls in a consistent way

throughout your application to reduce user confusion and to hide

application complexity.

 Guidelines for designing your navigation strategy:

 Design toolbars and menus to help users find functionality provided by

the UI.

 Consider using wizards to implement navigation between forms in a

predictable way, and determine how you will preserve navigation state

between sessions if this is necessary.

 Avoid duplication of logic for navigation event handlers, and avoid hard-

coding navigation paths where possible. Consider using the Command

pattern to handle common actions from multiple sources.

USER EXPERIENCE

 Consider the following guidelines when designing for user experience:

 Do not design overloaded or over complex interfaces. Provide a clear path

through the application for each key user scenario, and consider using

colors and noninvasive animations to draw the user's attention to important

changes in the UI, such as state changes.

 Provide helpful and informative error messages, without exposing sensitive

data.

 For actions that might take longer to complete, try to avoid blocking the

user. At a minimum, provide feedback on the progress of the action, and

consider if the user should be able to cancel the process.

 Consider empowering the user by providing flexibility and customization

of the UI through configuration and, where appropriate, personalization.

USER INTERFACE

 Guidelines to be considered when designing your user interface:

 Consider using a Separated Presentation pattern such as MVP to separate the
layout design from interface processing. Use templates to provide a common
look and feel to all of the UI screens, and maintain a common look and feel
for all elements of your UI to maximize accessibility and ease of use. Avoid
over complex layouts.

 Consider using forms-based input controls for data collection tasks, a
document-based input mechanism for collecting more free form input such
as text or drawing documents, or a wizard-based approach for more
sequenced or workflow driven data collection tasks.

 Avoid using hard-coded strings, and using external resources for text and
layout information, especially if your application will be localized

 Consider accessibility in your design. You should consider users with
disabilities when designing your input strategy.

 Take into account different screen sizes and resolutions, and different device
and input types such as mobile devices, touch screens, and pen and ink—
enabled devices.

VALIDATION

 Designing an effective input and data validation strategy is critical for the

security and correct operation of your application.

 Consider the following guidelines when designing your input and data

validation strategy:

 Input validation should be handled by the presentation layer, whilst

business rule validation should be handled by the business layer.

 Design your validation strategy to constrain, reject, and sanitize malicious

input. Investigate design patterns and third party libraries that can assist in

implementing validation. Identify business rules that are appropriate for

validation, such as transaction limits, and implement comprehensive

validation to ensure that these rules are not compromised.

 Ensure that you correctly handle validation errors, and avoid exposing

sensitive information in error messages.

TECHNOLOGY CONSIDERATIONS

 Mobile Applications:

 Consider the following guidelines when designing a mobile application:

 If you want to build full-featured connected, occasionally connected, or

disconnected executable applications that run on a wide range of

Microsoft Windows—based devices, consider using the Microsoft

Windows Compact Framework.

 If you want to build connected applications that support a wide variety

of mobile devices, or require Wireless Application Protocol (WAP),

compact HTML (cHTML), or similar rendering formats, consider using

ASP.NET for Mobile.

 Rich Client Applications:

 Consider the following guidelines when designing a rich client

application:

 If you want to build rich media and graphics capable applications, consider

using Windows Presentation Foundation (WPF).

 If you want to build applications that are downloaded from a Web server

and execute on a Windows client, consider using XAML Browser

Applications (XBAP).

 If you want to build applications that are predominantly document-based,

or are used for reporting, consider designing a Microsoft Office Business

Application (OBA).

 If you want to take advantage of the extensive range of third party

controls, and rapid application development tools, consider using

Windows Forms. If you decide to use Windows Forms and you are

designing a composite application, consider using the patterns & practices

Smart Client Software Factory.

 Rich Internet Applications:

 Consider the following guidelines when designing a Rich Internet

Application (RIA):

 If you want to build browser-based, connected applications that have

broad cross-platform reach, are highly graphical, and support rich media

and presentation features, consider using Silverlight.

 If you decide to build an application using Silverlight, consider the

following:

 Consider using the Presentation Model (Model-View-ViewModel)

pattern.

 If you are designing an application that must last and change,

consider using the patterns & practices Composite Client Application

Guidance.

 Web Applications:

 Consider the following guidelines when designing a Web application:

 If you want to build applications that are accessed through a Web browser or

specialist user agent, consider using ASP.NET.

 If you decide to build an application using ASP.NET, consider the following:

 Consider using master pages to simplify development and implement a

consistent UI across all pages.

 For increased interactivity and background processing, with fewer page

reloads, consider using AJAX with ASP.NET Web Forms.

 If you want to include islands of rich media content and interactivity,

consider using Silverlight controls with ASP.NET.

 If you want to improve the testability of your application, or implement a

more clear separation between your application user interface and

business logic, consider using the ASP.NET MVC Framework. This

framework supports a model-view-controller based approach to Web

application development.

PERFORMANCE CONSIDERATIONS

 Consider the following guidelines to maximize the performance of your presentation

layer:

 Design your presentation layer carefully so that it contains the functionality required

to deliver a rich and responsive user experience.

 Interaction between the presentation layer and the business or services layer of the

application should be asynchronous. This avoids the possibility of high latency or

intermittent connectivity adversely affecting the usability and responsiveness of the

application.

 Consider caching data in the presentation layer that will be displayed to the user.

 In general, avoid maintaining session data or caching per-user data unless the

number of users is limited, or the total size of the data relatively small.

 Always use data paging when querying for information. Do not rely on queries that

may return an unbounded volume of data, and use a data page size that is

appropriate for the amount of data you will display.

 In ASP.NET, use view state cautiously because it increases the volume of data

included in each round trip, and can reduce the performance of the application.

DESIGN STEPS FOR THE PRESENTATION LAYER

1. Identify your client type

2. Choose your presentation layer technology

3. Design your user interface

4. Determine your data validation strategy

5. Determine your business logic strategy

 UI Validation

 Business Process Components

 Domain Model

 Rules Engine

6. Determine your strategy for communication with other layers

 Direct Method Calls

 Web services

RELEVANT DESIGN PATTERNS

Category

Relevant patterns

Caching

Cache Dependency
Page Cache

Composition and Layout

Composition View
Presentation Model
Template View
Transform View
Two-step View

Exception Management

Exception Shielding

Navigation

Application Controller
Front Controller
Page Controller
Command

User Experience

Asynchronous Callback
Chain of Responsibility

THANK YOU !!!

